Electron-density informed effective and reliable de novo molecular design and lead optimization with ED2Mol

铅(地质) 电子 纳米技术 计算机科学 材料科学 物理 生物 核物理学 古生物学
作者
Mingyu Li,Kun Song,Mingzhu Zhao,G.F. You,Jie Zhong,Mengxi Zhao,Arong Li,Yu Chen,Guobin Li,Ying Kong,Jiacheng Wei,Zhaofu Wang,Jiamin Zhou,Hongbing Yang,Shichao Ma,Hailong Zhang,Irakoze Loïca Mélita,Weidong Lin,Yuhang Lu,Zhengtian Yu
标识
DOI:10.1101/2024.12.18.629081
摘要

Generative drug design opens new avenues for discovering novel compounds within the vast chemical space rather than conventional screening against limited compound libraries. However, the practical utility of the generated molecules is frequently constrained, as many designs prioritize a narrow range of pharmacological properties while neglecting physical reliability, which hinders the success rate of subsequent wet-lab evaluations. To address this, we propose ED2Mol, a deep learning-based approach that leverages fundamental electron density information to improve de novo molecular generation and lead optimization. The extensive evaluations across multiple benchmarks demonstrate that ED2Mol surpasses existing methods in terms of generation success rate and >97% physical reliability. It also facilitates automated lead optimization that is not fully implemented by other methods using fragment-based strategies. Furthermore, ED2Mol exhibits generalizability to more challenging, unseen allosteric pocket benchmarks, attaining consistent performance in both de novo molecule generation and lead optimization. More importantly, ED2Mol has been applied to various real-world essential targets, successfully identifying wet-lab validated bioactive compounds, ranging from FGFR3 orthosteric inhibitors to CDC42 allosteric inhibitors and GCK allosteric activators. The directly generated binding modes of these compounds with target proteins are close to predictions through molecular docking and further validated via the X-ray co-crystal structure. All these results highlight ED2Mol's potential as a useful tool in realistic drug design with enhanced effectiveness, physical reliability, and practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助LLL采纳,获得10
刚刚
1秒前
1秒前
yao完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
咖啡豆完成签到,获得积分10
3秒前
李健的小迷弟应助lalala123采纳,获得10
4秒前
4秒前
zmh发布了新的文献求助10
5秒前
Andrea0899完成签到,获得积分10
6秒前
6秒前
6秒前
打打应助杨阳洋采纳,获得10
7秒前
CLZ关闭了CLZ文献求助
7秒前
8秒前
JAY发布了新的文献求助10
9秒前
9秒前
南昌黑人发布了新的文献求助10
12秒前
12秒前
12秒前
香香小熊完成签到,获得积分10
13秒前
独特的芷容完成签到,获得积分10
14秒前
kkkk发布了新的文献求助10
14秒前
16秒前
汉堡包应助seul采纳,获得10
16秒前
lalala123发布了新的文献求助10
17秒前
合适的幻然完成签到,获得积分10
18秒前
zmh发布了新的文献求助10
19秒前
canian完成签到,获得积分10
19秒前
mm发布了新的文献求助10
20秒前
qian发布了新的文献求助10
21秒前
勤奋的绿萍完成签到,获得积分10
22秒前
25秒前
英俊的铭应助charles采纳,获得10
27秒前
芝麻糊应助qian采纳,获得10
28秒前
Owen应助naturehome采纳,获得10
28秒前
28秒前
笑傲江湖完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290003
求助须知:如何正确求助?哪些是违规求助? 4441401
关于积分的说明 13827489
捐赠科研通 4323954
什么是DOI,文献DOI怎么找? 2373439
邀请新用户注册赠送积分活动 1368835
关于科研通互助平台的介绍 1332770