亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electron-density informed effective and reliable de novo molecular design and lead optimization with ED2Mol

铅(地质) 电子 纳米技术 计算机科学 材料科学 物理 生物 核物理学 古生物学
作者
Mingyu Li,Kun Song,Mingzhu Zhao,G.F. You,Jie Zhong,Mengxi Zhao,Arong Li,Yu Chen,Guobin Li,Ying Kong,Jiacheng Wei,Zhaofu Wang,Jiamin Zhou,Hongbing Yang,Shichao Ma,Hailong Zhang,Irakoze Loïca Mélita,Weidong Lin,Yuhang Lu,Zhengtian Yu
标识
DOI:10.1101/2024.12.18.629081
摘要

Generative drug design opens new avenues for discovering novel compounds within the vast chemical space rather than conventional screening against limited compound libraries. However, the practical utility of the generated molecules is frequently constrained, as many designs prioritize a narrow range of pharmacological properties while neglecting physical reliability, which hinders the success rate of subsequent wet-lab evaluations. To address this, we propose ED2Mol, a deep learning-based approach that leverages fundamental electron density information to improve de novo molecular generation and lead optimization. The extensive evaluations across multiple benchmarks demonstrate that ED2Mol surpasses existing methods in terms of generation success rate and >97% physical reliability. It also facilitates automated lead optimization that is not fully implemented by other methods using fragment-based strategies. Furthermore, ED2Mol exhibits generalizability to more challenging, unseen allosteric pocket benchmarks, attaining consistent performance in both de novo molecule generation and lead optimization. More importantly, ED2Mol has been applied to various real-world essential targets, successfully identifying wet-lab validated bioactive compounds, ranging from FGFR3 orthosteric inhibitors to CDC42 allosteric inhibitors and GCK allosteric activators. The directly generated binding modes of these compounds with target proteins are close to predictions through molecular docking and further validated via the X-ray co-crystal structure. All these results highlight ED2Mol's potential as a useful tool in realistic drug design with enhanced effectiveness, physical reliability, and practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Magali发布了新的文献求助50
刚刚
5秒前
wysiii发布了新的文献求助10
11秒前
满意的伊完成签到,获得积分10
13秒前
15秒前
在水一方应助kalcspin采纳,获得10
17秒前
24秒前
29秒前
JJ完成签到,获得积分10
37秒前
重生之我在学校搞科研完成签到,获得积分10
37秒前
44秒前
赘婿应助科研通管家采纳,获得10
46秒前
英姑应助科研通管家采纳,获得10
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
上官若男应助叶潭采纳,获得10
48秒前
zrm20020717发布了新的文献求助10
50秒前
51秒前
科研通AI5应助噜啦啦采纳,获得10
57秒前
烟花应助激动的哈密瓜采纳,获得10
57秒前
朴素的书琴完成签到,获得积分10
59秒前
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
1分钟前
激动的哈密瓜完成签到,获得积分10
1分钟前
1分钟前
叶潭发布了新的文献求助10
1分钟前
1分钟前
iorpi完成签到,获得积分10
1分钟前
1分钟前
Abdurrahman发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Abdurrahman完成签到,获得积分10
1分钟前
wang关注了科研通微信公众号
1分钟前
Walter完成签到 ,获得积分10
1分钟前
刘良烽完成签到,获得积分10
1分钟前
1分钟前
1分钟前
KT酱完成签到 ,获得积分10
1分钟前
wang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805859
求助须知:如何正确求助?哪些是违规求助? 4121581
关于积分的说明 12752249
捐赠科研通 3855289
什么是DOI,文献DOI怎么找? 2122969
邀请新用户注册赠送积分活动 1145105
关于科研通互助平台的介绍 1036678