清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hexagonal Fractals: Topological Indices, Fractal Dimensions, Structure-property Modeling and its Applications

分形 六方晶系 缩放比例 拓扑(电路) 相似性(几何) 财产(哲学) 数学 分形维数 表征(材料科学) 网络的分形维数 分形分析 几何学 统计物理学 物理 计算机科学 数学分析 组合数学 图像(数学) 结晶学 人工智能 化学 光学 哲学 认识论
作者
K. Gayathri,S. Roy,S. Govardhan
出处
期刊:Current Organic Synthesis [Bentham Science]
卷期号:22 (7): 811-820
标识
DOI:10.2174/0115701794361800250116051003
摘要

Background: Hexagonal fractals are intricate geometric patterns that exhibit self-similarity. They are characterized by their repetitive hexagonal shapes at different scales. Due to their unique properties and potential applications, hexagonal fractals have been stud-ied in various fields, including mathematics, physics, and chemistry. Objective: The primary aim of this research is to provide a comprehensive analysis of hex-agonal fractals, focusing on their topological indices, fractal dimensions, and their applica-tions in structure-property modeling. We aim to calculate topological indices to quantify the structural complexity and connectivity of hexagonal fractals. Additionally, we will determine fractal dimensions to characterize their self-similarity and scaling behaviour. Finally, we will explore the relationship between topological indices, fractal dimensions, and relevant prop-erties through structure-property modeling. Methods: A systematic approach was employed to investigate hexagonal fractals. Various topological indices were computed using established mathematical techniques. Fractal di-mensions were determined. Structure-property modeling was conducted by establishing re-lationships between the calculated topological indices and fractal dimensions with experi-mentally measured properties. Results: The research yielded significant findings regarding hexagonal fractals. A variety of topological indices were calculated, revealing the intricate connectivity and structural com-plexity of these fractals. Fractal dimensions were determined, confirming their self-similar nature and scaling behaviour. Structure-property modeling demonstrated strong correlations between the topological indices and fractal dimensions with properties such as conductivity, mechanical strength, and chemical reactivity. Conclusion: This research provides valuable insights into the topological characteristics, fractal dimensions, and potential applications of hexagonal fractals. The findings contribute to a deeper understanding of these complex structures and their relevance in various scien-tific domains. The developed structure-property modeling approaches offer a valuable tool for predicting and controlling the properties of materials based on their fractal structure. Fu-ture research may explore additional applications and delve into the underlying mechanisms governing the relationship between fractal structure and properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
kzxhql发布了新的文献求助10
13秒前
28秒前
31秒前
V_I_G完成签到 ,获得积分10
33秒前
minnie完成签到 ,获得积分10
34秒前
40秒前
专注的觅云完成签到 ,获得积分10
43秒前
怪怪完成签到,获得积分10
47秒前
Nene完成签到 ,获得积分20
51秒前
56秒前
xxfsx应助kzxhql采纳,获得10
59秒前
xxfsx应助kzxhql采纳,获得10
59秒前
1分钟前
Funnymudpee发布了新的文献求助10
1分钟前
1分钟前
MTF完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Eileen完成签到 ,获得积分0
2分钟前
合不着完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
6分钟前
糟糕的翅膀完成签到,获得积分10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624