Deep neural network and transfer learning for annual wetland vegetation mapping using sentinel-2 time-series data in the heterogeneous lake floodplain environment

湿地 漫滩 植被(病理学) 环境科学 时间序列 水文学(农业) 系列(地层学) 遥感 地质学 地图学 地理 计算机科学 生态学 机器学习 医学 古生物学 岩土工程 病理 生物
作者
Jinquan Ai,Xinxing Han,Lijuan Chen,Haiqing He,Xiaolong Li,Yongbin Tan,Tao Xie,Xinming Tang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:: 1-24 被引量:1
标识
DOI:10.1080/01431161.2024.2448309
摘要

The lake-floodplain wetlands are characterized by high biodiversity, difficult access, and significant environmental changes. Traditional remote sensing mapping methods struggle to generate consistent time-series data on wetland vegetation communities. Current research has endeavoured to address this issue through the application of deep learning methodologies. However, a significant limitation of these models is their reliance on a substantial volume of training samples, which contradicts the difficulty and high cost of obtaining samples from the lake-floodplain wetlands. Whether it is possible to construct a transferable deep learning model under small sample conditions and apply it to the mapping of lake-floodplain wetlands is an urgent issue that needs to be addressed. To solve this problem, this study first constructed a deep neural network (DNN) designed specifically for mapping complex lake-floodplain wetland vegetation under conditions of limited sample size. Subsequently, using 2021 as a reference year, a novel histogram threshold method was proposed to identify the unchanged samples for the target transfer years of 2019, 2020, 2022, and 2023. Finally, annual wetland vegetation mapping was performed in Poyang Lake using DNN and sample transfer learning (STL). The results showed that high-quality annual time-series data of wetland vegetation can be generated using the constructed DNN and STL, with all overall accuracies exceeding 80%. The histogram threshold method, which combines SAD and NDVI indicators of key phenological period, can effectively solve the problem of difficulty in determining the unchanged samples in transfer learning for heterogeneous lake wetlands. Furthermore, the performance of STL based on the constructed DNN model was significantly superior to those based on support vector machine and random forest algorithms for mapping annual wetland vegetation communities using limited training samples. This study demonstrates that the effective application of DNN and STL will be highly beneficial for long-term monitoring of vegetation in lake-floodplain wetlands, particularly where sample availability is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉龙猫发布了新的文献求助10
刚刚
momo发布了新的文献求助10
1秒前
1秒前
2秒前
5秒前
充电宝应助微风418采纳,获得10
5秒前
6秒前
missinged完成签到,获得积分10
6秒前
田様应助nimeng123采纳,获得10
6秒前
赘婿应助文静煜城采纳,获得10
7秒前
bblythe完成签到,获得积分10
9秒前
9秒前
10秒前
汪了个汪完成签到,获得积分20
13秒前
13秒前
林生完成签到 ,获得积分10
15秒前
听风发布了新的文献求助10
15秒前
酷酷的安柏完成签到 ,获得积分10
15秒前
深情安青应助自信猕猴桃采纳,获得10
16秒前
nimeng123完成签到,获得积分10
16秒前
和谐亦瑶完成签到,获得积分10
16秒前
momo完成签到,获得积分20
17秒前
18秒前
20秒前
nimeng123发布了新的文献求助10
20秒前
动漫大师发布了新的文献求助10
23秒前
雏菊完成签到,获得积分10
25秒前
最爱吃火锅完成签到,获得积分10
27秒前
飞飞鱼完成签到,获得积分10
27秒前
睽阔完成签到 ,获得积分10
28秒前
听风完成签到,获得积分10
31秒前
忆修完成签到,获得积分10
32秒前
36秒前
eurus驳回了bkagyin应助
36秒前
科研通AI2S应助bafanbqg采纳,获得10
37秒前
Sarrot完成签到,获得积分20
37秒前
cheese完成签到,获得积分10
38秒前
春日午后完成签到,获得积分10
38秒前
39秒前
风云完成签到,获得积分10
39秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852