Machine learning engineered PoLixNano nanoparticles overcome delivery barriers for nebulized mRNA therapeutics

纳米技术 纳米颗粒 化学 计算机科学 材料科学
作者
Dandan Zhang,Qin Xiao,Jie Tang,Kai Xiao,Tingting Chen,Chen Yang,Y. Z. Liu,Lifeng Xu,Chao Li,Larry Cai,Shouyuan Huang,Wei Wang,Liming Peng,Joseph Rosenecker,Dan Shao,Quanming Zou,Shan Guan
标识
DOI:10.1101/2024.11.03.621713
摘要

There continues to be a dearth of competent inhalable mRNA delivery although it holds great potential for addressing a wide variety of refractory diseases. The huge advances seen with parenteral-administered lipid nanoparticle (LNP) have not been translated into nebulized mRNA delivery due to the aggressive nebulization process and insurmountable barriers inherent to respiratory mucosa. Here, we show amphiphilic block copolymers revealed by machine learning (ML) can spontaneously form stabilized nanoparticles (PoLixNano) with the lipids components of LNP and simultaneously impart the PoLixNano with "shield" (shear force-resistant) and "spear" (pulmonary barriers-penetrating abilities) capabilities. We present a ML approach that leverages physicochemical properties and inhaled mRNA transfection profiles of a chemically diverse library of polymeric components to validate the integration of "shield" and "spear" properties as highly predictive indicators of transfection efficiency. This quantitative structure-mRNA transfection prediction (QSMTP) model identifies top-performing amphiphilic-copolymers from more than 10000 candidates and suggests their mucus-penetrating ability outweights the shear force-resistant property in contributing to efficient mRNA transfection. The optimized PoLixNano substantially outperforms the LNP counterpart and mediates up to 1114-times higher levels of mRNA transfection in animal models with negligible toxicities. The PoLixNano promotes overwhelming SARS-CoV-2 antigen-specific sIgA antibody secretion and expansion of TRM cells which collectively confers 100% protection in mice against lethal SARS-CoV-2 challenges and blocks the transmission of Omicron variant between hamsters. PoLixNano also displays versatile therapeutic potential in lung carcinoma and cystic fibrosis models. Our study provides new insights for designing delivery platforms of aerosol-inhaled mRNA therapeutics with clinical translation potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈艳林发布了新的文献求助10
1秒前
充电宝应助公西翠萱采纳,获得30
1秒前
打工牛牛应助现代的澜采纳,获得10
1秒前
1秒前
ruen发布了新的文献求助30
4秒前
4秒前
FelixChen应助Physio采纳,获得10
4秒前
green发布了新的文献求助10
5秒前
汤米bb发布了新的文献求助10
9秒前
gmjinfeng完成签到,获得积分0
10秒前
科研通AI5应助bread采纳,获得10
10秒前
hzauhzau发布了新的文献求助10
10秒前
隐形曼青应助green采纳,获得10
11秒前
linlin完成签到,获得积分10
11秒前
小二郎应助星许采纳,获得10
12秒前
15秒前
林lin完成签到,获得积分10
16秒前
科目三应助DownTAT采纳,获得10
16秒前
翻斗花园第一突击手牛爷爷完成签到 ,获得积分10
17秒前
green完成签到,获得积分10
18秒前
ding应助JING采纳,获得10
18秒前
碳火涮羊肉完成签到 ,获得积分10
18秒前
19秒前
打打应助饱满的靖易采纳,获得50
21秒前
小小小鲤鱼完成签到,获得积分10
22秒前
感动书文完成签到,获得积分10
26秒前
27秒前
小松鼠完成签到 ,获得积分10
27秒前
28秒前
Jenkin完成签到,获得积分10
29秒前
现代的澜发布了新的文献求助10
30秒前
fjljylm完成签到 ,获得积分20
30秒前
31秒前
DownTAT发布了新的文献求助10
31秒前
冰蓝完成签到 ,获得积分10
31秒前
阔达老五发布了新的文献求助10
32秒前
33秒前
33秒前
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835045
求助须知:如何正确求助?哪些是违规求助? 3377563
关于积分的说明 10499197
捐赠科研通 3097057
什么是DOI,文献DOI怎么找? 1705466
邀请新用户注册赠送积分活动 820611
科研通“疑难数据库(出版商)”最低求助积分说明 772130