STIT-Net- A Wavelet based Convolutional Transformer Model for Motor Imagery EEG Signal Classification in the Sensorimotor Bands

运动表象 脑电图 计算机科学 人工智能 模式识别(心理学) 编码器 小波 变压器 语音识别 脑-机接口 心理学 神经科学 工程类 电压 电气工程 操作系统
作者
S Chrisilla,R. Shantha Selva Kumari
出处
期刊:Clinical Eeg and Neuroscience [SAGE Publishing]
标识
DOI:10.1177/15500594241312450
摘要

Motor Imagery (MI) electroencephalographic (EEG) signal classification is a pioneer research branch essential for mobility rehabilitation. This paper proposes an end-to-end hybrid deep network “Spatio Temporal Inception Transformer Network (STIT-Net)” model for MI classification. Discrete Wavelet Transform (DWT) is used to derive the alpha (8–13) Hz and beta (13–30) Hz EEG sub bands which are dominant during motor tasks to enhance the performance of the proposed work. STIT-Net employs spatial and temporal convolutions to capture spatial dependencies and temporal information and an inception block with three parallel convolutions extracts multi-level features. Then the transformer encoder with self-attention mechanism highlights the similar task. The proposed model improves the classification of the Physionet EEG motor imagery dataset with an average accuracy of 93.52% and 95.70% for binary class in the alpha and beta bands respectively, and 85.26% and 87.34% for three class, for four class 81.95% and 82.66% were obtained in the alpha and beta band respective EEG based motor signals which is better compared to the results available in the literature. The proposed methodology is further evaluated on other motor imagery datasets, both for subject-independent and cross-subject conditions, to assess the performance of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YuF完成签到,获得积分10
1秒前
仲侣弥月发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
阅遍SCI完成签到,获得积分10
7秒前
小陈发布了新的文献求助10
8秒前
8秒前
mmm发布了新的文献求助10
10秒前
朴素的曼易完成签到,获得积分20
11秒前
猪猪hero应助搞怪的白竹采纳,获得10
13秒前
电催化领头羊完成签到,获得积分10
13秒前
六等于三二一完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
大模型应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
帅哥发布了新的文献求助10
14秒前
今后应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得30
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
鸣笛应助科研通管家采纳,获得30
15秒前
华仔应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
16秒前
李爱国应助美好焦采纳,获得10
17秒前
热心市民小红花应助yun采纳,获得10
19秒前
吴家鑫关注了科研通微信公众号
20秒前
21秒前
22秒前
23秒前
nhh发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952525
求助须知:如何正确求助?哪些是违规求助? 3497889
关于积分的说明 11089301
捐赠科研通 3228428
什么是DOI,文献DOI怎么找? 1784906
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309