Multi-Task Multi-Scale Feature Selection for Point Cloud Registration

特征选择 计算机科学 点云 稳健性(进化) 人工智能 特征提取 模式识别(心理学) 维数之咒 降维 特征(语言学) 云计算 比例(比率) 相互信息 数据挖掘 语言学 哲学 物理 量子力学 操作系统 生物化学 化学 基因
作者
Yue Wu,Chuang Luo,Maoguo Gong,Hangqi Ding,Jinlong Sheng,Qiguang Miao,Hao Li,Wenping Ma,Hao He
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tevc.2025.3526779
摘要

3D point cloud registration is a process of solving the geometric transformation between two point clouds. This process is an important issue in computer vision and pattern recognition. The registration methods based on geometric features are highly sensitive to the scale of feature extraction. Changes in scale can introduce inaccuracies in feature descriptions, thereby compromising the reliability of the registration results. To mitigate the impact of feature scale on the outcomes and the high-dimensional issue arising from features of different scales, we propose a method for multi-scale point cloud feature selection. We solve the high-dimensional problem of feature selection by designing a multi-task framework. By designing a mutual information dimensionality reduction method, we decomposed the high-dimensional feature selection task of different descriptors with multi-scale features into multiple related low-dimensional feature selection tasks. Then, by means of the knowledge transfer among these low-dimensional feature selection tasks, we sought the best feature subset to obtain more robust feature information. We evaluate the effectiveness of our method by conducting extensive experiments on various datasets. The experimental results show that the method outperforms other feature descriptors in terms of descriptive power and robustness and improves the effectiveness of point cloud registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祖之微笑发布了新的文献求助10
1秒前
忆雪完成签到,获得积分10
1秒前
夏木夏完成签到,获得积分10
1秒前
2秒前
Mado完成签到,获得积分10
3秒前
无奈的盼望完成签到 ,获得积分10
4秒前
6秒前
7秒前
8秒前
追光者发布了新的文献求助10
8秒前
wimper完成签到,获得积分10
9秒前
Ava应助rainny采纳,获得10
10秒前
10秒前
Juan完成签到,获得积分10
11秒前
橘子果酱发布了新的文献求助10
11秒前
12秒前
12秒前
ccm应助水门采纳,获得10
12秒前
科研通AI5应助水门采纳,获得10
12秒前
噔噔蹬发布了新的文献求助10
13秒前
汉堡包应助zbm采纳,获得10
13秒前
充电宝应助临子采纳,获得10
14秒前
15秒前
15秒前
16秒前
16秒前
Jerry完成签到,获得积分10
16秒前
16秒前
16秒前
chsdpolos应助糕糕采纳,获得20
18秒前
18秒前
18秒前
赛赛发布了新的文献求助10
19秒前
橘子果酱发布了新的文献求助10
20秒前
21秒前
优秀星星发布了新的文献求助10
22秒前
23秒前
cc应助魁梧的采柳采纳,获得10
23秒前
烂漫的猕猴桃完成签到,获得积分10
24秒前
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188852
求助须知:如何正确求助?哪些是违规求助? 3724593
关于积分的说明 11735359
捐赠科研通 3401644
什么是DOI,文献DOI怎么找? 1866651
邀请新用户注册赠送积分活动 923520
科研通“疑难数据库(出版商)”最低求助积分说明 834517