Physics-Based Machine Learning to Predict Hydration Free Energies for Small Molecules with a Minimal Number of Descriptors: Interpretable and Accurate

人工智能 机器学习 统计物理学 计算机科学 物理
作者
Ajeet Kumar Yadav,Meher K. Prakash,Pradipta Bandyopadhyay
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c07090
摘要

Hydration free energy (HFE) of molecules is a fundamental property having importance throughout chemistry and biology. Calculation of the HFE can be challenging and expensive with classical molecular dynamics simulation-based approaches. Machine learning (ML) models are increasingly being used to predict HFE. Although the accuracy of ML models for data sets for small molecules is impressive, these models suffer from lack of interpretability. In this work, we have developed a physics-based ML model with only six descriptors, which is both accurate and fully interpretable, and applied it to a database for small molecule HFE, FreeSolv. We evaluated the electrostatic energy by an approximate closed form of the Generalized Born (GB) model and polar surface area. In addition, we have log P and hydrogen bond acceptor and donors as descriptors along with the number of rotatable bonds. We have used different ML models, such as random forest and extreme gradient boosting. The best result from these models has a mean absolute error of only 0.74 kcal/mol. The main power of this model is that the descriptors have clear physical meaning, and it was found that the descriptor describing the electrostatics and the polar surface area, followed by the hydrogen bond donors and acceptors, are the most important factors for the calculation of hydration free energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amanda发布了新的文献求助10
刚刚
柔弱蹇完成签到,获得积分10
刚刚
火狐完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
nirvana发布了新的文献求助10
2秒前
斯文黄豆发布了新的文献求助10
2秒前
李玉琼发布了新的文献求助40
3秒前
3秒前
4秒前
李健的小迷弟应助meimei采纳,获得10
4秒前
4秒前
5秒前
科研通AI2S应助慰藉采纳,获得10
5秒前
5秒前
6秒前
一万朵蝴蝶完成签到,获得积分10
6秒前
7秒前
7秒前
zhao关注了科研通微信公众号
8秒前
17发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
小熊猫完成签到,获得积分10
8秒前
9秒前
Sunny完成签到,获得积分10
9秒前
研友_VZG7GZ应助Lovely_pan采纳,获得10
9秒前
打打应助nirvana采纳,获得10
9秒前
euphoria完成签到,获得积分10
10秒前
10秒前
情怀应助曾泓跃采纳,获得10
10秒前
10秒前
小房子完成签到,获得积分10
11秒前
寂寞的羽毛完成签到,获得积分10
11秒前
11秒前
细心可乐完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775