Predictive Model for Erosion Rate of Concrete Under Wind Gravel Flow Based on K-Fold Cross-Validation Combined with Support Vector Machine

折叠(高阶函数) 交叉验证 支持向量机 腐蚀 岩土工程 体积流量 工程类 结构工程 环境科学 地质学 计算机科学 机械 机械工程 机器学习 地貌学 物理
作者
Yanhua Zhao,Kai Zhang,Aojun Guo,Fengyun Hao,Jie Ma
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:15 (4): 614-614
标识
DOI:10.3390/buildings15040614
摘要

In the Gobi region, concrete structures frequently suffer erosion from wind gravel flow. This erosion notably impairs their longevity. Therefore, creating a predictive model for wind gravel flow-related concrete damage is crucial to proactively address and manage this problem. Traditional theoretical models often fail to predict the erosion rate of concrete (CER) structures accurately. This issue arises from oversimplified assumptions and the failure to account for environmental variations and complex nonlinear relationships between parameters. Consequently, a single traditional model is inadequate for predicting the CER under wind gravel flow conditions in this region. To address this, the study utilized a machine learning (ML) model for a more precise prediction and evaluation of CER. The support vector machine (SVM) model demonstrates superior predictive performance, evidenced by its R2 value nearing one and a notable reduction in RMSE 1.123 and 1.573 less than the long short-term memory network (LSTM) and BP neural network (BPNN) models, respectively. Ensuring that the training set comprises at least 80% of the total data volume is crucial for the SVM model’s prediction accuracy. Moreover, erosion time is identified as the most significant factor affecting the CER. An enhanced theoretical erosion model, derived from the Bitter and Oka framework and integrating concrete strength and erosion parameters, was formulated. It showed average relative errors of 22% and 31.6% for the Bitter and Oka models, respectively. The SVM model, however, recorded a minimal average relative error of just −0.5%, markedly surpassing these improved theoretical models in terms of prediction accuracy. Theoretical models often rely on simplifying assumptions, such as linear relationships and homogeneous material properties. In practice, however, factors like concrete materials, wind gravel flow, and climate change are nonlinear and non-homogeneous. This significantly limits the applicability of these models in real-world environments. Ultimately, the SVM algorithm is highly effective in developing a reliable prediction model for CER. This model is crucial for safeguarding concrete structures in wind gravel flow environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fzh1234发布了新的文献求助10
1秒前
四海发布了新的文献求助10
1秒前
cyy1226发布了新的文献求助10
2秒前
开心的眼睛完成签到,获得积分10
5秒前
洋芋片完成签到 ,获得积分10
8秒前
yjy完成签到,获得积分10
9秒前
大龙的野心完成签到,获得积分20
9秒前
9秒前
10秒前
可爱的函函应助杨惊蛰采纳,获得30
11秒前
one完成签到 ,获得积分10
11秒前
keira发布了新的文献求助10
12秒前
小丛完成签到 ,获得积分10
14秒前
Shandongdaxiu发布了新的文献求助10
15秒前
gege发布了新的文献求助10
15秒前
jenningseastera应助四海采纳,获得10
16秒前
科研通AI5应助cyy1226采纳,获得10
17秒前
勤恳风华完成签到,获得积分10
20秒前
starro完成签到 ,获得积分10
29秒前
科研通AI2S应助gege采纳,获得10
29秒前
周em12_完成签到,获得积分10
34秒前
kosmos完成签到,获得积分10
38秒前
wangfang0228完成签到 ,获得积分10
40秒前
41秒前
41秒前
小赞芽完成签到,获得积分10
42秒前
45秒前
llchen完成签到,获得积分0
46秒前
47秒前
无算浮白发布了新的文献求助10
47秒前
英俊的铭应助cheng采纳,获得10
49秒前
重要的菲鹰完成签到 ,获得积分10
50秒前
忽闻水发布了新的文献求助10
52秒前
无算浮白完成签到,获得积分10
52秒前
53秒前
斗鱼飞鸟和俞完成签到,获得积分10
54秒前
小广完成签到,获得积分10
54秒前
王艺玮关注了科研通微信公众号
55秒前
retard完成签到 ,获得积分10
56秒前
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781324
求助须知:如何正确求助?哪些是违规求助? 3326844
关于积分的说明 10228534
捐赠科研通 3041858
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751