Deciphering the Therapeutic Efficacy and Underlying Mechanisms of Dendrobium officinale Polysaccharides in the Intervention of Alzheimer’s Disease Mice: Insights from Metabolomics and Microbiome

代谢组学 疾病 微生物群 干预(咨询) 石斛 生物 医学 生物信息学 计算生物学 传统医学 内科学 精神科
作者
Jun Fu,Zhou Liang,Zihao Chen,Yiyang Zhou,Fen Xiong,Qian Liang,Hongchang Gao
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:73 (9): 5635-5648
标识
DOI:10.1021/acs.jafc.4c07913
摘要

As a traditional drug-food homologous plant, Dendrobium officinale is widely recognized for its nutritional and medicinal value. Specifically, D. officinale polysaccharide (DOP) has garnered attention as a potential prebiotic for its protective effects on gut microbiota and the nervous system. However, the underlying mechanism by which DOP improves cognitive dysfunction in Alzheimer's disease (AD) remains unclear. This study intends to elucidate the beneficial effects of DOP on AD mice from the perspectives of metabolomics and the intestinal microbiome. The results showed that DOP significantly ameliorated cognitive dysfunction, attenuated hippocampal neuronal damage and Aβ plaque deposition, and restored intestinal barrier integrity in AD mice. The antibiotic-cocktail-induced germ-free mouse model confirmed that the neuroprotective effect of DOP was dependent on gut microbiota. Further investigations demonstrated that DOP influenced the composition of gut microbiota and restored its diversity. Additionally, DOP reshaped metabolic profile disorders in AD mice and increased the short-chain fatty acids (SCFAs) content. Correlation analysis further highlighted that specific gut microbiota was associated with the metabolism of AD mice. In conclusion, this study sheds light on the positive impact of DOP in reshaping the gut microbiota and enhancing cognitive function, offering important perspectives for the possible advancement and utilization of DOP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xxkim721完成签到,获得积分10
刚刚
暴富完成签到,获得积分10
1秒前
yuC完成签到,获得积分10
1秒前
3秒前
易槐发布了新的文献求助10
3秒前
图样图森破完成签到,获得积分10
3秒前
风清扬应助彩色的中蓝采纳,获得30
4秒前
4秒前
诚心盼海发布了新的文献求助10
5秒前
夏佳泽完成签到 ,获得积分10
5秒前
UUU完成签到 ,获得积分10
5秒前
邦邦发布了新的文献求助10
5秒前
土豆完成签到 ,获得积分10
6秒前
6秒前
充电宝应助邢凡柔采纳,获得10
7秒前
顾矜应助秦始皇采纳,获得10
7秒前
7秒前
SYLH应助动点子智慧采纳,获得10
7秒前
7秒前
xhf发布了新的文献求助10
8秒前
陶征应助勤劳的鸡采纳,获得10
8秒前
9秒前
Singularity应助多背单词采纳,获得10
9秒前
9秒前
whatever举报求助违规成功
9秒前
CAOHOU举报求助违规成功
9秒前
千跃举报求助违规成功
9秒前
9秒前
风趣的老太应助andrewyu采纳,获得10
9秒前
10秒前
10秒前
归尘发布了新的文献求助10
11秒前
12秒前
12秒前
乐乐妈完成签到,获得积分10
13秒前
bkagyin应助_Dearlxy采纳,获得10
14秒前
14秒前
瘦瘦依白应助苏小采纳,获得10
14秒前
xueyan发布了新的文献求助20
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092