Optimization of Drilling Parameters While Drilling Surface Holes Using Machine Learning and Differential Evolution

钻探 随钻测量 穿透率 振动 石油工程 梯度升压 计算机科学 工程类 机器学习 随机森林 机械工程 声学 物理
作者
Ahmed Alsaihati,Menhal Ismail,Salaheldin Elkatatny
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-14
标识
DOI:10.2118/223965-pa
摘要

Summary Downhole vibrations while drilling surface hole sections can cause inefficient drilling. Downhole sensors can be used to provide real-time data on vibration levels encountered during drilling operations. This information helps the drilling crew to identify and address the factors causing excessive vibrations by adjusting drilling parameters based on real-time feedback to maintain or enhance the rate of penetration (ROP). The high cost, however, hinders the operator from using such sensors in each well. This research presents a workflow that coupled machine learning (ML) with an optimization algorithm to improve the drilling operation by enhancing the ROP while reducing the severity of downhole vibrations (i.e., lateral and torsional) without using downhole sensors. The ML modeling included multiclass-multioutput classification (MMC) to predict the severity of downhole vibration and regression analysis to predict the ROP. Different ML models, including K-nearest neighbors (K-NN), decision trees (DTs), random forest (RF), gradient boosting (GB), and extreme gradient boosting (XGBoost), were trained using data from eight historical wells drilled in a field of interest. The most accurate model was then combined with an optimization algorithm, differential evolution (DE), to optimize the drilling operation in Well No. 9. Four different optimization scenarios were explored to determine the optimal drilling parameters, surface rotary speed (RS) and weight on bit (WOB), to enhance the drilling efficiency. The values of RS and WOB parameters were varied within the traditional formation’s operational window, and a range of ±30%, 50%, and 70% of the original values applied during actual drilling in Well No. 9. The analysis showed that the RF was the most accurate model during the testing phase. The MMC achieved a Jaccard score of 0.83, while the regression achieved R2 and root mean square error (RMSE) values of 0.86 and 0.37, respectively. The results also revealed that all optimization scenarios were able to minimize downhole lateral and torsional vibrations almost across all drilled formations in Well No. 9. Moreover, none of the optimization scenarios resulted in a significant increase in the ROP in the uppermost drilled formation, except for a minor improvement observed in the top section. Scenarios 1 and 2 did not enhance the ROP in the lowermost drilled formations, while Scenarios 3 and 4 exhibited a higher improvement. The optimization workflow described in this paper demonstrates the potential for ROP enhancement while continuously monitoring downhole vibrations during drilling subsequent offset wells without the need to install downhole sensors, hence, reducing the overall cost of the well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HC3完成签到,获得积分10
刚刚
ziluolan007完成签到,获得积分10
刚刚
刚刚
刚刚
徐凤年完成签到,获得积分10
1秒前
GS_lly发布了新的文献求助30
1秒前
香蕉觅云应助山君采纳,获得10
1秒前
李治海完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
桐桐应助鹿茸采纳,获得10
2秒前
3秒前
CipherSage应助从容采纳,获得10
3秒前
3秒前
漫镜发布了新的文献求助10
3秒前
如沐春风发布了新的文献求助10
3秒前
肖肖发布了新的文献求助10
5秒前
莫言驳回了Lucas应助
5秒前
6秒前
cheng发布了新的文献求助10
6秒前
青黛发布了新的文献求助10
7秒前
caichengyu发布了新的文献求助10
7秒前
科研通AI5应助机智绝悟采纳,获得10
8秒前
Kirito发布了新的文献求助10
8秒前
8秒前
打打应助安好采纳,获得10
9秒前
9秒前
XXX完成签到 ,获得积分20
9秒前
10秒前
xquinn发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
liuzhanyu发布了新的文献求助10
12秒前
赘婿应助caichengyu采纳,获得10
12秒前
善学以致用应助caichengyu采纳,获得10
12秒前
000关注了科研通微信公众号
13秒前
13秒前
GS_lly完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836