体内
谷氨酰胺
胞浆
亚细胞定位
新陈代谢
化学
生物物理学
绿色荧光蛋白
细胞生物学
生物化学
生物
细胞质
氨基酸
生物技术
酶
基因
作者
Bingjie Liu,Zhihui Zhao,Pengcheng Wang,Kamiran Aihemaiti,Lixin Zhu,Qingpeng Wei,Wenzhe Li,Xia Yuan,Jing Wu,Changtao Jiang,Min Hao,Jing Wang
标识
DOI:10.1002/anie.202416608
摘要
Abstract Glutamine is the most abundant amino acid in human blood and muscle, and is integral to a wide variety of functions in cancer cells. However, the inability to monitor the subcellular distribution of glutamine in real‐time has obscured understanding of glutamine metabolism under physiological and pathological conditions. Here, we report the development of a genetically encoded fluorescent sensor and demonstrate how this GlnBP‐cpYFP fusion “GlutaR sensor” undergoes glutamine‐induced conformational changes reflected in detectable fluorescence responses. Obtained after iterative screening of approximately 1,600 variants, GlutaR exhibits a ratiometric readout, fast response kinetics, and high responsivity (R 488/405 of ~1000 %), and we demonstrate its selectivity for monitoring glutamine fluctuations in multiple cell types. Additionally, using digitonin permeabilization of GlutaR HeLa cells, we generated a calibration curve and performed in situ titration to quantify free glutamine concentrations in subcellular compartments (cytosol, nucleus, mitochondria). Subsequently, we applied GlutaR to investigate how chemical and genetic inhibition of glutamine synthetase (GS) and glutaminase (GLS) differentially alter glutamine levels in subcellular compartments. Finally, we demonstrate GlutaR's ability to monitor dynamic glutamine levels in muscle and liver tissues of diabetic mice in vivo . These findings collectively demonstrate GlutaR as a versatile tool for the spatiotemporal characterization of glutamine metabolism in living cells and tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI