Creep-Rupture Prediction of Inconel 617 Using a Python-Based Machine-Learning Approach

Python(编程语言) 因科镍合金 计算机科学 蠕动 人工智能 机器学习 材料科学 复合材料 程序设计语言 合金
作者
Mohammad Shafinul Haque,Zakia Al Kadri
标识
DOI:10.1115/pvp2024-121293
摘要

Abstract Creep rupture data is only sometimes readily available at the desired temperature or stress levels, and performing creep tests can be both time-consuming and expensive. Creep-rupture data from various sources are often combined for model calibration and validation. However, such combined data may overlap or exhibit a wide scatter band because of different metadata factors. A small change in chemical composition may affect the creep properties creating a large variation in the rupture data. Advances in data mining techniques make it possible to use machine learning to consider metadata such as the chemical composition of different heats in modeling for improved prediction. In this study, a Python-based machine-learning approach is applied to predict the creep rupture of alloy Inconel 617. Data from five different sources (General Electric Company (GE), Oak Ridge National Laboratory (ORNL), German HTGR, Huntington Alloy, and Korea Atomic Energy Research Institute (KAERI)) which encompasses multiple heats are used. Pearson Correlation Coefficient (PCC) and Spearman Correlation Coefficient (SCC) are employed to identify the dominant chemical elements and operating conditions (stress) influencing creep rupture. Six different regression methods (Random Forest Regression (RF), Linear Regression (LR), K-Nearest Neighbor (KNN), Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Regression (SVR), and Gradient Boosting Regression (GB)) are used for model training. The resulting prediction curve is validated against data not used in calibration. A detailed flow diagram elucidating the methodology is also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助撒玉采纳,获得10
刚刚
本真完成签到,获得积分20
刚刚
酒酿是也发布了新的文献求助10
1秒前
yangtao199完成签到,获得积分10
1秒前
KK完成签到,获得积分10
1秒前
1秒前
星睿发布了新的文献求助10
1秒前
2秒前
清爽的纸鹤完成签到,获得积分10
2秒前
2秒前
科研小趴菜完成签到 ,获得积分10
3秒前
充电宝应助开放如天采纳,获得10
3秒前
伊伊完成签到,获得积分20
3秒前
田様应助lx采纳,获得10
4秒前
黑色幽默发布了新的文献求助10
4秒前
4秒前
潇洒日记本完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
小蘑菇应助周em12_采纳,获得10
6秒前
风趣安青完成签到 ,获得积分10
6秒前
7秒前
Akim应助Sharp采纳,获得10
7秒前
7秒前
7秒前
8秒前
SYLH应助D515采纳,获得20
8秒前
小米小米63完成签到,获得积分10
8秒前
orixero应助lilongcheng采纳,获得10
8秒前
友好傲白发布了新的文献求助10
8秒前
8秒前
zhao完成签到,获得积分10
8秒前
adasdad完成签到 ,获得积分10
9秒前
9秒前
AY发布了新的文献求助10
9秒前
ivytian发布了新的文献求助10
9秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831