Monitoring of agricultural progress in rice-wheat rotation area based on UAV RGB images

人工智能 RGB颜色模型 计算机科学 旋转(数学) 特征(语言学) 卷积神经网络 深度学习 过程(计算) 特征提取 计算机视觉 随机森林 模式识别(心理学) 哲学 语言学 操作系统
作者
Jianliang Wang,Chen Chen,Senpeng Huang,Hui Wang,Yuanyuan Zhao,Jiacheng Wang,Zhaosheng Yao,Chengming Sun,Tao Liu
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1502863
摘要

Real-time monitoring of rice-wheat rotation areas is crucial for improving agricultural productivity and ensuring the overall yield of rice and wheat. However, the current monitoring methods mainly rely on manual recording and observation, leading to low monitoring efficiency. This study addresses the challenges of monitoring agricultural progress and the time-consuming and labor-intensive nature of the monitoring process. By integrating Unmanned aerial vehicle (UAV) image analysis technology and deep learning techniques, we proposed a method for precise monitoring of agricultural progress in rice-wheat rotation areas. The proposed method was initially used to extract color, texture, and convolutional features from RGB images for model construction. Then, redundant features were removed through feature correlation analysis. Additionally, activation layer features suitable for agricultural progress classification were proposed using the deep learning framework, enhancing classification accuracy. The results showed that the classification accuracies obtained by combining Color+Texture, Color+L08CON, Color+ResNet50, and Color+Texture+L08CON with the random forest model were 0.91, 0.99, 0.98, and 0.99, respectively. In contrast, the model using only color features had an accuracy of 85.3%, which is significantly lower than that of the multi-feature combination models. Color feature extraction took the shortest processing time (0.19 s) for a single image. The proposed Color+L08CON method achieved high accuracy with a processing time of 1.25 s, much faster than directly using deep learning models. This method effectively meets the need for real-time monitoring of agricultural progress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
save发布了新的文献求助10
2秒前
2秒前
善学以致用应助田田田田采纳,获得10
3秒前
lanxinge发布了新的文献求助30
3秒前
9202211125完成签到,获得积分10
3秒前
4秒前
4秒前
安和桥北完成签到 ,获得积分10
5秒前
wuli完成签到,获得积分10
6秒前
chengzi发布了新的文献求助10
6秒前
小马甲应助Sunrise采纳,获得10
7秒前
刻苦雪萍发布了新的文献求助10
8秒前
坤坤发布了新的文献求助10
8秒前
2021完成签到 ,获得积分10
8秒前
hzhang完成签到,获得积分10
11秒前
15秒前
希望天下0贩的0应助kobeho24采纳,获得10
16秒前
星辰大海应助Hhh采纳,获得10
17秒前
深情的幼南完成签到,获得积分10
18秒前
大腚疯猪应助橘子采纳,获得20
19秒前
小马甲应助奋斗藏花采纳,获得10
20秒前
20秒前
20秒前
细腻问柳完成签到,获得积分10
22秒前
Youlu发布了新的文献求助10
22秒前
充电宝应助黄加豪采纳,获得10
24秒前
Hyh_orz发布了新的文献求助10
24秒前
25秒前
橙子完成签到,获得积分10
26秒前
波风水门pxf完成签到,获得积分10
26秒前
chengzi完成签到,获得积分10
26秒前
youyou完成签到,获得积分10
27秒前
27秒前
科研通AI5应助老武采纳,获得10
27秒前
伽古拉40k发布了新的文献求助30
28秒前
29秒前
29秒前
Yuna完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841