Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt

电催化剂 化学 从头算 电解质 催化作用 化学物理 红外光谱学 动力学 氢键 吸附 无机化学 分子 电极 物理化学 电化学 有机化学 物理 量子力学
作者
Peng Li,Yaling Jiang,Yunzi Hu,Yana Men,Yuwen Liu,Wen‐Bin Cai,Shengli Chen
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:5 (10): 900-911 被引量:128
标识
DOI:10.1038/s41929-022-00846-8
摘要

The origin of the large kinetic pH effect in hydrogen electrocatalysis, that is, the approximately two orders of magnitude decrease in reaction kinetics when moving from acid to alkaline, remains far from having a consensus. Here we show that it is the significantly different connectivity of hydrogen-bond networks in electric double layers that causes the large kinetic pH effect. This result has been obtained by meticulously comparing the electric double layers of acid and alkaline interfaces from ab initio molecular dynamics simulations, and the computed vibrational density of states of water molecules in the interfaces simulated with ab initio molecular dynamics, with the results of in situ surface-enhanced infrared absorption spectroscopy. Using a Pt–Ru alloy as a model catalyst, we further reveal an unanticipated role of OH adsorption in improving the kinetics of alkaline hydrogen electrocatalysis, namely, by increasing the connectivity of hydrogen-bond networks in electric double layers rather than by merely affecting the energetics of surface reaction steps. These findings highlight the key roles of electric double layer structures in electrocatalysis. The hydrogen evolution and oxidation reactions on Pt electrocatalysts exhibit much more favourable kinetics in acidic than in alkaline electrolytes. Now, by combining theoretical simulations and spectroscopic measurements, it is demonstrated that the different connectivity of hydrogen-bond networks in the electric double layer is responsible for such an effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
做自己发布了新的文献求助10
1秒前
2秒前
2秒前
Maestro_S应助zhangshu采纳,获得10
2秒前
米奇完成签到,获得积分10
4秒前
4秒前
小陆完成签到,获得积分10
6秒前
6秒前
8秒前
CXSCXD发布了新的文献求助10
9秒前
共享精神应助crebHuman采纳,获得10
11秒前
12秒前
xx泡菜鱼发布了新的文献求助30
13秒前
科研通AI2S应助热电采纳,获得10
13秒前
14秒前
科研通AI2S应助CXSCXD采纳,获得10
14秒前
15秒前
15秒前
cc发布了新的文献求助10
17秒前
yoyo完成签到,获得积分10
19秒前
19秒前
夏天发布了新的文献求助30
20秒前
20秒前
端庄忆安发布了新的文献求助10
20秒前
20秒前
外向的凝阳发布了新的文献求助100
22秒前
22秒前
24秒前
SS完成签到,获得积分10
24秒前
包容乌完成签到 ,获得积分20
24秒前
LuoYR@SZU发布了新的文献求助10
24秒前
小白小王完成签到,获得积分10
25秒前
25秒前
27秒前
28秒前
星辰大海应助忽而今夏采纳,获得10
28秒前
许是城陌发布了新的文献求助10
29秒前
crebHuman发布了新的文献求助10
31秒前
31秒前
37秒前
高分求助中
【重要提醒】请驳回机器人应助,等待人工应助!!!! 20000
Teaching Social and Emotional Learning in Physical Education 1000
Multifunctionality Agriculture: A New Paradigm for European Agriculture and Rural Development 500
grouting procedures for ground source heat pump 500
A Monograph of the Colubrid Snakes of the Genus Elaphe 300
An Annotated Checklist of Dinosaur Species by Continent 300
The Chemistry of Carbonyl Compounds and Derivatives 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2340752
求助须知:如何正确求助?哪些是违规求助? 2033261
关于积分的说明 5085131
捐赠科研通 1777738
什么是DOI,文献DOI怎么找? 888956
版权声明 556158
科研通“疑难数据库(出版商)”最低求助积分说明 474027