GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

脑电图 计算机科学 脑-机接口 解码方法 模式识别(心理学) 卷积神经网络 运动表象 人工智能 图形 联营 自回归模型 Softmax函数 算法 理论计算机科学 数学 心理学 计量经济学 精神科
作者
Yimin Hou,Shuyue Jia,Xiangmin Lun,Ziqian Hao,Yan Shi,Yang Li,Rui Zeng,Jinglei Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7312-7323 被引量:90
标识
DOI:10.1109/tnnls.2022.3202569
摘要

Towards developing effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by electroencephalogram (EEG), is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson's matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and group-wise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet Dataset), 96.24% and 80.89% (High Gamma Dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step towards better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain motor imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ixueyi完成签到,获得积分10
4秒前
徐东洋完成签到 ,获得积分10
4秒前
4秒前
6秒前
Enid发布了新的文献求助10
6秒前
巴拉巴拉巴拉拉完成签到,获得积分10
10秒前
爱笑的曼寒完成签到,获得积分10
12秒前
zzzllll完成签到,获得积分10
13秒前
胡姐姐完成签到,获得积分10
14秒前
欣慰的觅儿完成签到,获得积分10
15秒前
18秒前
隐形曼青应助yqt采纳,获得10
18秒前
NexusExplorer应助开放朋友采纳,获得10
18秒前
19秒前
BINGBING1230发布了新的文献求助10
19秒前
JamesPei应助伶俐的金连采纳,获得10
19秒前
21秒前
22秒前
潇潇雨歇完成签到,获得积分10
26秒前
26秒前
科研通AI6应助wcwpl采纳,获得10
26秒前
27秒前
LaTeXer应助BINGBING1230采纳,获得10
29秒前
Akim应助BINGBING1230采纳,获得10
29秒前
30秒前
细腻的枫叶应助沉静安荷采纳,获得10
30秒前
bkagyin应助cyan采纳,获得10
31秒前
小美完成签到 ,获得积分10
32秒前
34秒前
FW发布了新的文献求助10
35秒前
moriaty应助潇潇雨歇采纳,获得10
36秒前
BINGBING1230完成签到,获得积分10
36秒前
highhigh应助塔塔采纳,获得30
39秒前
41秒前
ddd666完成签到 ,获得积分10
42秒前
Vito完成签到,获得积分10
43秒前
43秒前
aqiuyuehe发布了新的文献求助20
48秒前
脑洞疼应助姚学宇采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4768365
求助须知:如何正确求助?哪些是违规求助? 4105022
关于积分的说明 12698397
捐赠科研通 3823060
什么是DOI,文献DOI怎么找? 2109914
邀请新用户注册赠送积分活动 1134361
关于科研通互助平台的介绍 1015535