亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

脑电图 计算机科学 脑-机接口 解码方法 模式识别(心理学) 卷积神经网络 运动表象 人工智能 图形 联营 自回归模型 Softmax函数 算法 理论计算机科学 数学 心理学 计量经济学 精神科
作者
Yimin Hou,Shuyue Jia,Xiangmin Lun,Ziqian Hao,Yan Shi,Yang Li,Rui Zeng,Jinglei Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7312-7323 被引量:105
标识
DOI:10.1109/tnnls.2022.3202569
摘要

Towards developing effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by electroencephalogram (EEG), is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson's matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and group-wise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet Dataset), 96.24% and 80.89% (High Gamma Dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step towards better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain motor imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助冥王星采纳,获得10
刚刚
2秒前
Angenstern完成签到 ,获得积分10
4秒前
yy发布了新的文献求助10
5秒前
7秒前
8秒前
疑夕完成签到,获得积分10
9秒前
无花果应助科研通管家采纳,获得30
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
10秒前
爆米花应助加菲丰丰采纳,获得10
11秒前
yy完成签到,获得积分20
11秒前
baymin发布了新的文献求助10
13秒前
小杭76应助yy采纳,获得10
14秒前
玩命的糖豆完成签到 ,获得积分10
22秒前
简让完成签到 ,获得积分10
28秒前
桐桐应助火星上的穆采纳,获得10
32秒前
化学课die表完成签到 ,获得积分10
41秒前
41秒前
饼饼完成签到,获得积分10
46秒前
小桃耶发布了新的文献求助10
49秒前
Reticent完成签到 ,获得积分10
52秒前
苗条的小蜜蜂完成签到 ,获得积分10
53秒前
AX完成签到,获得积分10
59秒前
1分钟前
瘦瘦含巧完成签到 ,获得积分10
1分钟前
zkx发布了新的文献求助10
1分钟前
1分钟前
1分钟前
hrx6664发布了新的文献求助10
1分钟前
大佬完成签到 ,获得积分10
1分钟前
长安完成签到 ,获得积分10
1分钟前
你眼带笑完成签到 ,获得积分10
1分钟前
ccczzz完成签到,获得积分10
1分钟前
hrx6664完成签到,获得积分20
1分钟前
xstar完成签到 ,获得积分10
1分钟前
1分钟前
小李完成签到,获得积分20
1分钟前
lilili2060发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291069
求助须知:如何正确求助?哪些是违规求助? 4442222
关于积分的说明 13829543
捐赠科研通 4325186
什么是DOI,文献DOI怎么找? 2374028
邀请新用户注册赠送积分活动 1369382
关于科研通互助平台的介绍 1333523