GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

脑电图 计算机科学 脑-机接口 解码方法 模式识别(心理学) 卷积神经网络 运动表象 人工智能 图形 联营 自回归模型 Softmax函数 算法 理论计算机科学 数学 心理学 计量经济学 精神科
作者
Yimin Hou,Shuyue Jia,Xiangmin Lun,Ziqian Hao,Yan Shi,Yang Li,Rui Zeng,Jinglei Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7312-7323 被引量:105
标识
DOI:10.1109/tnnls.2022.3202569
摘要

Towards developing effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by electroencephalogram (EEG), is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson's matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and group-wise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet Dataset), 96.24% and 80.89% (High Gamma Dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step towards better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain motor imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhBian完成签到,获得积分10
1秒前
佳佳佳完成签到,获得积分20
1秒前
1秒前
脑洞疼应助破军采纳,获得10
3秒前
lmc完成签到,获得积分10
3秒前
就叫十一吧完成签到,获得积分10
3秒前
伊力扎提应助研友_Lmy3XL采纳,获得10
3秒前
xu发布了新的文献求助10
4秒前
佳佳佳发布了新的文献求助10
4秒前
天天快乐应助赵小坤堃采纳,获得10
4秒前
5秒前
zhanjl13发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
dyf发布了新的文献求助10
6秒前
优秀笑萍发布了新的文献求助10
6秒前
7秒前
fanqinge完成签到,获得积分20
10秒前
天才小仙女完成签到,获得积分10
10秒前
健忘梦凡完成签到 ,获得积分10
10秒前
早点睡觉发布了新的文献求助10
11秒前
11秒前
小锤完成签到,获得积分10
12秒前
852应助fzzf采纳,获得10
13秒前
14秒前
fanqinge发布了新的文献求助10
14秒前
Labubuz完成签到,获得积分10
14秒前
15秒前
濠哥妈咪完成签到,获得积分10
15秒前
16秒前
16秒前
单薄之瑶完成签到,获得积分10
17秒前
Koma发布了新的文献求助10
17秒前
田様应助单纯的石头采纳,获得10
17秒前
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
coke完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677742
求助须知:如何正确求助?哪些是违规求助? 4977060
关于积分的说明 15162645
捐赠科研通 4837654
什么是DOI,文献DOI怎么找? 2591872
邀请新用户注册赠送积分活动 1545256
关于科研通互助平台的介绍 1503345