Towards precision oncology with patient-derived xenografts

精确肿瘤学 医学 精密医学 转化研究 个性化医疗 临床肿瘤学 计算生物学 肿瘤科 临床前试验 临床试验 癌症 生物信息学 内科学 医学物理学 病理 生物
作者
Eugenia R. Zanella,Elena Grassi,Livio Trusolino
出处
期刊:Nature Reviews Clinical Oncology [Springer Nature]
卷期号:19 (11): 719-732 被引量:125
标识
DOI:10.1038/s41571-022-00682-6
摘要

Under the selective pressure of therapy, tumours dynamically evolve multiple adaptive mechanisms that make static interrogation of genomic alterations insufficient to guide treatment decisions. Clinical research does not enable the assessment of how various regulatory circuits in tumours are affected by therapeutic insults over time and space. Likewise, testing different precision oncology approaches informed by composite and ever-changing molecular information is hard to achieve in patients. Therefore, preclinical models that incorporate the biology and genetics of human cancers, facilitate analyses of complex variables and enable adequate population throughput are needed to pinpoint randomly distributed response predictors. Patient-derived xenograft (PDX) models are dynamic entities in which cancer evolution can be monitored through serial propagation in mice. PDX models can also recapitulate interpatient diversity, thus enabling the identification of response biomarkers and therapeutic targets for molecularly defined tumour subgroups. In this Review, we discuss examples from the past decade of the use of PDX models for precision oncology, from translational research to drug discovery. We elaborate on how and to what extent preclinical observations in PDX models have confirmed and/or anticipated findings in patients. Finally, we illustrate emerging methodological efforts that could broaden the application of PDX models by honing their predictive accuracy or improving their versatility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
2秒前
landy完成签到 ,获得积分10
3秒前
完美世界应助windy采纳,获得10
4秒前
5秒前
6秒前
小蘑菇应助能干的吐司采纳,获得10
6秒前
蟹蟹发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
傻傻的哈密瓜完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648