Purely Predicting the Pharmaceutical Solubility: What to Expect from PC-SAFT and COSMO-RS?

COSMO-RS公司 溶解度 热力学 水准点(测量) 二进制数 化学 溶剂 溶解度参数 活度系数 计算机科学 水溶液 物理 有机化学 数学 离子液体 催化作用 算术 地理 大地测量学
作者
Martin Klajmon
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:19 (11): 4212-4232 被引量:19
标识
DOI:10.1021/acs.molpharmaceut.2c00573
摘要

A pair of popular thermodynamic models for pharmaceutical applications, namely, the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state and the conductor-like screening model for real solvents (COSMO-RS) are thoroughly benchmarked for their performance in predicting the solubility of active pharmaceutical ingredients (APIs) in pure solvents. The ultimate goal is to provide an illustration of what to expect from these progressive frameworks when applied to the thermodynamic solubility of APIs based on activity coefficients in a purely predictive regime without specific experimental solubility data (the fusion properties of pure APIs were taken from experiments). While this kind of prediction represents the typical modus operandi of the first-principles-aided COSMO-RS, PC-SAFT is a relatively highly parametrized model that relies on experimental data, against which its pure-substance and binary interaction parameters (kij) are fitted. Therefore, to make this benchmark as fair as possible, we omitted any binary parameters of PC-SAFT (i.e., kij = 0 in all cases) and preferred pure-substance parameter sets for APIs not trained to experimental solubility data. This computational approach, together with a detailed assessment of the obtained solubility predictions against a large experimental data set, revealed that COSMO-RS convincingly outperformed PC-SAFT both qualitatively (i.e., COSMO-RS was better in solvent ranking) and quantitatively, even though the former is independent of both substance- and mixture-specific experimental data. Regarding quantitative comparison, COSMO-RS outperformed PC-SAFT for 9 of the 10 APIs and for 63% of the API–solvent systems, with root-mean-square deviations of the predicted data from the entire experimental data set being 0.82 and 1.44 log units, respectively. The results were further analyzed to expand the picture of the performance of both models with respect to the individual APIs and solvents. Interestingly, in many cases, both models were found to qualitatively incorrectly predict the direction of deviations from ideality. Furthermore, we examined how the solubility predictions from both models are sensitive to different API parametrizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2025zmx发布了新的文献求助30
1秒前
1秒前
科研通AI5应助yyx采纳,获得10
1秒前
可爱的函函应助主旋律采纳,获得10
2秒前
3秒前
4秒前
丶whist完成签到,获得积分10
5秒前
科研通AI5应助Zekun采纳,获得10
6秒前
maoyuni发布了新的文献求助10
6秒前
搜集达人应助茂茂采纳,获得10
8秒前
8秒前
9秒前
深藏blue发布了新的文献求助10
9秒前
田様应助wenlin采纳,获得10
9秒前
可爱的函函应助雪山飞龙采纳,获得10
10秒前
10秒前
杭谷波完成签到,获得积分10
10秒前
李子敬完成签到,获得积分10
11秒前
陈小纯完成签到,获得积分20
12秒前
13秒前
yyx发布了新的文献求助10
14秒前
14秒前
画龙完成签到,获得积分10
15秒前
田様应助云上人采纳,获得10
17秒前
clairevox完成签到,获得积分10
20秒前
科研通AI5应助Adzuki0812采纳,获得10
21秒前
22秒前
22秒前
深情安青应助深藏blue采纳,获得10
23秒前
大模型应助闲得追月时采纳,获得30
24秒前
24秒前
24秒前
Willing发布了新的文献求助10
24秒前
香蕉觅云应助孤独灰狼采纳,获得10
24秒前
25秒前
26秒前
胡先生发布了新的文献求助30
27秒前
云上人发布了新的文献求助10
28秒前
sissi完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795227
求助须知:如何正确求助?哪些是违规求助? 3340218
关于积分的说明 10299325
捐赠科研通 3056829
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805274
科研通“疑难数据库(出版商)”最低求助积分说明 762420