Machine learning \& artificial intelligence in the quantum domain

计算机科学 量子 量子计算机 大数据 领域(数学) 量子机器学习 人工智能 意义(存在) 量子信息科学 量子信息 量子技术 数学 开放量子系统 物理 认识论 量子力学 操作系统 量子纠缠 哲学 纯数学
作者
Vedran Dunjko,Hans J. Briegel
出处
期刊:Cornell University - arXiv 被引量:12
标识
DOI:10.48550/arxiv.1709.02779
摘要

Quantum information technologies, and intelligent learning systems, are both emergent technologies that will likely have a transforming impact on our society. The respective underlying fields of research -- quantum information (QI) versus machine learning (ML) and artificial intelligence (AI) -- have their own specific challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question to what extent these fields can learn and benefit from each other. QML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently, we have witnessed breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups in ML, critical in our "big data" world. Conversely, ML already permeates cutting-edge technologies, and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been demonstrated for interactive learning, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments, and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement, researchers have also broached the fundamental issue of quantum generalizations of ML/AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is described by quantum mechanics. In this review, we describe the main ideas, recent developments, and progress in a broad spectrum of research investigating machine learning and artificial intelligence in the quantum domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张光光发布了新的文献求助10
刚刚
Wecple完成签到 ,获得积分10
刚刚
赖建琛完成签到 ,获得积分10
1秒前
告白气球完成签到,获得积分10
1秒前
lll发布了新的文献求助10
1秒前
科研通AI5应助cassandra1231采纳,获得100
1秒前
Jasper应助自觉士萧采纳,获得10
2秒前
繁荣的向秋完成签到,获得积分10
2秒前
宇帕完成签到,获得积分20
3秒前
谨慎寻冬完成签到,获得积分10
3秒前
小茗同学完成签到,获得积分10
3秒前
崔崔完成签到,获得积分10
4秒前
4秒前
告白气球发布了新的文献求助10
5秒前
5秒前
河豚发布了新的文献求助10
5秒前
tramp应助醉熏的凡旋采纳,获得10
5秒前
PTL关闭了PTL文献求助
5秒前
自建完成签到,获得积分10
5秒前
猎空完成签到,获得积分10
6秒前
7秒前
7秒前
杜杜完成签到,获得积分10
7秒前
7秒前
7秒前
许甜甜鸭应助聪明钢铁侠采纳,获得10
7秒前
猫与咖啡完成签到,获得积分10
7秒前
溜溜很优秀完成签到,获得积分10
7秒前
酷炫茉莉发布了新的文献求助10
8秒前
8秒前
5114完成签到,获得积分10
8秒前
漂亮水池完成签到,获得积分10
9秒前
cdercder应助忧郁芒果采纳,获得10
9秒前
9秒前
CodeCraft应助yy采纳,获得10
9秒前
是是是发布了新的文献求助10
10秒前
10秒前
JAY发布了新的文献求助10
10秒前
薯愿完成签到,获得积分10
10秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830751
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477730
捐赠科研通 3093242
什么是DOI,文献DOI怎么找? 1702418
邀请新用户注册赠送积分活动 819024
科研通“疑难数据库(出版商)”最低求助积分说明 771203