Predicting axillary lymph node metastasis in breast cancer patients: A radiomics-based multicenter approach with interpretability analysis

医学 无线电技术 乳腺癌 接收机工作特性 可解释性 放射科 阶段(地层学) 边距(机器学习) 机器学习 人工智能 癌症 内科学 计算机科学 古生物学 生物
作者
Haohuan Li,Minping Hong,Xinhua Li,Lifu Lin,Xueyuan Tan,Yushuang Liu
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:176: 111522-111522 被引量:5
标识
DOI:10.1016/j.ejrad.2024.111522
摘要

Purpose To develop a MRI-based radiomics model, integrating the intratumoral and peritumoral imaging information to predict axillary lymph node metastasis (ALNM) in patients with breast cancer and to elucidate the model's decision-making process via interpretable algorithms. Methods This study included 376 patients from three institutions who underwent contrast-enhanced breast MRI between 2021 and 2023. We used multiple machine learning algorithms to combine peritumoral, intratumoral, and radiological characteristics with the building of radiological, radiomics, and combined models. The model's performance was compared based on the area under the curve (AUC) obtained from the receiver operating characteristic analysis and interpretable machine learning techniques to analyze the operating mechanism of the model. Results The radiomics model, incorporating features from both intratumoral tissue and the 3 mm peritumoral region and utilizing the backpropagation neural network (BPNN) algorithm, demonstrated superior diagnostic efficacy, achieving an AUC of 0.820. The AUC of the combination of the RAD score, clinical T stage, and spiculated margin was as high as 0.855. Furthermore, we conducted SHapley Additive exPlanations (SHAP) analysis to evaluate the contributions of RAD score, clinical T stage, and spiculated margin in ALNM status prediction. Conclusions The interpretable radiomics model we propose can better predict the ALNM status of breast cancer and help inform clinical treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
研友_VZG7GZ应助尹小末采纳,获得10
1秒前
丘比特应助蓝莓芝士采纳,获得10
1秒前
虚幻的雪巧完成签到,获得积分10
1秒前
今后应助破晓采纳,获得10
1秒前
2秒前
你好完成签到,获得积分20
2秒前
思源应助顺顺尼采纳,获得10
3秒前
4秒前
zmnzmnzmn完成签到,获得积分10
4秒前
5秒前
胖虎完成签到 ,获得积分10
5秒前
5秒前
烟花应助夜轩岚采纳,获得10
5秒前
LY完成签到,获得积分10
5秒前
晨雾锁阳完成签到 ,获得积分10
5秒前
zty发布了新的文献求助10
6秒前
6秒前
麦辣堡发布了新的文献求助10
6秒前
中杯西瓜冰完成签到,获得积分10
7秒前
木头完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
苹果绿发布了新的文献求助10
8秒前
wxy发布了新的文献求助10
8秒前
Y哦莫哦莫完成签到,获得积分10
10秒前
xxr发布了新的文献求助10
11秒前
11秒前
12秒前
彭于晏应助zhixian采纳,获得30
12秒前
ii发布了新的文献求助10
13秒前
13秒前
酷波er应助深情新之采纳,获得10
14秒前
14秒前
wxy完成签到,获得积分10
14秒前
15秒前
15秒前
小宸完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343