Process Knowledge Extraction and Knowledge Graph Construction Through Prompting: A Quantitative Analysis

计算机科学 知识图 过程(计算) 图形 知识管理 情报检索 理论计算机科学 程序设计语言
作者
Patrizio Bellan,Mauro Dragoni,Chiara Ghidini
标识
DOI:10.1145/3605098.3635957
摘要

The automated construction of process knowledge graphs from process description documents is a challenging research area. Here, the lack of massive annotated data, as well as raw text repositories describing real-world process documents, makes it extremely difficult to adopt deep learning approaches to perform this transformation. Indeed, the main challenge is to extract conceptual elements representing the actual entities or relations of the process model described within its corresponding natural language document. Large Language Models (LLMs) have shown promising results in supporting the extraction of structured knowledge from unstructured texts. Although several works explored this strategy to build or complete knowledge graphs, the exploitation of LLMs toward domain-specific knowledge base construction from scratch has not yet been investigated deeply. Our aim is to exploit the LLM capabilities to extract process knowledge from unseen natural language descriptions. In this work, we present a prompt-based in-context learning strategy to extract, from process descriptions, conceptual information that can be converted into their equivalent knowledge graphs. Such a strategy is performed in a multi-turn dialog fashion. We validate the accuracy of the proposed approach from a quantitative perspective. The results highlight the feasibility of the proposed approach within our low-resource scenarios and open interesting perspectives for future activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
agou完成签到,获得积分10
1秒前
1秒前
哈基米德应助第一个相遇采纳,获得20
1秒前
1秒前
脑洞疼应助研友_nqr2pZ采纳,获得10
1秒前
含蓄蓝天完成签到,获得积分10
1秒前
周萌发布了新的文献求助20
2秒前
椰椰鲨完成签到,获得积分10
2秒前
2秒前
banana完成签到,获得积分10
2秒前
3秒前
宣箴完成签到,获得积分20
4秒前
馆长举报量子星尘求助涉嫌违规
4秒前
冯微微完成签到,获得积分10
4秒前
JJJJJJJRRRRRR发布了新的文献求助10
4秒前
4秒前
汉堡包应助HYCT采纳,获得30
4秒前
水若寒阳发布了新的文献求助10
4秒前
菠菜应助Criminology34采纳,获得300
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
上官若男应助klicking采纳,获得10
6秒前
wangheng完成签到,获得积分10
6秒前
archeologist完成签到,获得积分10
6秒前
欧耶椰椰完成签到,获得积分10
7秒前
7秒前
duizhang发布了新的文献求助30
7秒前
馆长应助sun采纳,获得10
7秒前
雨天完成签到,获得积分10
7秒前
7秒前
刘凯发布了新的文献求助10
8秒前
无情人雄完成签到,获得积分20
8秒前
单身的海安关注了科研通微信公众号
8秒前
8秒前
9秒前
10秒前
YaKE发布了新的文献求助10
10秒前
10秒前
周萌发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993138
求助须知:如何正确求助?哪些是违规求助? 4240931
关于积分的说明 13212856
捐赠科研通 4036337
什么是DOI,文献DOI怎么找? 2208385
邀请新用户注册赠送积分活动 1219402
关于科研通互助平台的介绍 1137670