Nonlinear Locality-Preserving Projections With Dynamic Graph Learning

地点 非线性降维 非线性系统 降维 水准点(测量) 判别式 歧管(流体力学) 模式识别(心理学) 算法 图形 计算机科学 投影(关系代数) 数学 人工智能 理论计算机科学 物理 量子力学 语言学 哲学 机械工程 大地测量学 工程类 地理
作者
Xiaowei Zhao,Dongming Wu,Feiping Nie,Weizhong Yu,Chen Zhao,Xuelong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/tnnls.2024.3408835
摘要

The affinity graph is regarded as a mathematical representation of the local manifold structure. The performance of locality-preserving projections (LPPs) and its variants is tied to the quality of the affinity graph. However, there are two drawbacks in current approaches. First, the pre-designed graph is inconsistent with the actual distribution of data. Second, the linear projection way would cause damage to the nonlinear manifold structure. In this article, we propose a nonlinear dimensionality reduction model, named deep locality-preserving projections (DLPPs), to solve these problems simultaneously. The model consists of two loss functions, each employing deep autoencoders (AEs) to extract discriminative features. In the first loss function, the affinity relationships among samples in the intermediate layer are determined adaptively according to the distances between samples. Since the features of samples are obtained by nonlinear mapping, the manifold structure can be kept in the low-dimensional space. Additionally, the learned affinity graph is able to avoid the influence of noisy and redundant features. In the second loss function, the affinity relationships among samples in the last layer (also called the reconstruction layer) are learned. This strategy enables denoised samples to have a good manifold structure. By integrating these two functions, our proposed model minimizes the mismatch of the manifold structure between samples in the denoising space and the low-dimensional space, while reducing sensitivity to the initial weights of the graph. Extensive experiments on toy and benchmark datasets have been conducted to verify the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨衣完成签到,获得积分20
2秒前
2秒前
刘静静发布了新的文献求助30
4秒前
恋空完成签到 ,获得积分10
5秒前
六六发布了新的文献求助10
6秒前
7秒前
cocopepsi完成签到,获得积分10
8秒前
Aria_chao发布了新的文献求助10
13秒前
13秒前
13秒前
轻松幼南发布了新的文献求助10
14秒前
六六完成签到,获得积分10
15秒前
小蘑菇应助xinxiangshicheng采纳,获得10
15秒前
啊嘞嘞完成签到,获得积分10
16秒前
lwc关注了科研通微信公众号
16秒前
16秒前
正直的夏真完成签到 ,获得积分10
17秒前
18秒前
19秒前
21秒前
shulei发布了新的文献求助10
22秒前
大模型应助研友_huang采纳,获得10
23秒前
SuperYM完成签到,获得积分10
24秒前
jjjmsekk发布了新的文献求助10
25秒前
25秒前
27秒前
27秒前
28秒前
30秒前
张玉发布了新的文献求助10
31秒前
32秒前
lwc发布了新的文献求助10
32秒前
33秒前
35秒前
苹果巧蕊完成签到 ,获得积分10
36秒前
crosl发布了新的文献求助10
36秒前
香蕉觅云应助1.1采纳,获得10
38秒前
andrele发布了新的文献求助30
39秒前
41秒前
lm完成签到,获得积分10
42秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899796
求助须知:如何正确求助?哪些是违规求助? 3444386
关于积分的说明 10834939
捐赠科研通 3169429
什么是DOI,文献DOI怎么找? 1751105
邀请新用户注册赠送积分活动 846489
科研通“疑难数据库(出版商)”最低求助积分说明 789226