AFF-Net: A Strip Steel Surface Defect Detection Network via Adaptive Focusing Features

棱锥(几何) 块(置换群论) 特征(语言学) 计算机科学 适应性 人工智能 特征提取 模式识别(心理学) 光学 数学 生态学 语言学 哲学 物理 生物 几何学
作者
Yongzhao Du,Haixin Chen,Yuqing Fu,Jianqing Zhu,Huanqiang Zeng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:15
标识
DOI:10.1109/tim.2024.3398131
摘要

In strip steel production, detecting surface defects is crucial for ensuring product quality and optimizing production line efficiency. However, detecting defects is complicated by the variations in size, complex structures, and the wide range of defect morphologies present in strip steel. To tackle these challenges, this paper proposes a strip steel surface defect detection network via adaptive focusing features (AFF-Net). Firstly, an adaptive focusing feature block (AFF-Block) is proposed, which applies the "Diffusion-Aggregation" thought. This block repositions and adaptively assigns weights to defect features, guiding the network to focus on defect features and more effectively capture defects' spatial and morphological changes. Subsequently, a focused feature pyramid network (Foc-FPN) is proposed to enhance the network's adaptability to complex defects through multi-scale focusing fusion. This innovative structure adaptively balances the semantic gap of defect features at different scales and alleviates the abstraction feature overload. The proposed algorithm achieved a mean Average Precision (mAP@IoU=0.5) of 83.5% on the public NEU-DET dataset for strip steel surface defects, surpassing the baseline network by 8.2%. Compared to existing models, this detection method strengthens the connection between defect characteristics and more effectively detects irregularly distributed defects in complex strip steel surface images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不一潘发布了新的文献求助30
1秒前
Desperado完成签到,获得积分10
1秒前
1秒前
1秒前
lzl完成签到,获得积分10
1秒前
Qitianbajie应助kai采纳,获得10
2秒前
2秒前
Daaz完成签到,获得积分10
3秒前
畅快忆秋发布了新的文献求助20
3秒前
Zx_1993应助科研通管家采纳,获得20
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
李爱国应助爱撒娇的行恶采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得30
3秒前
ding应助科研通管家采纳,获得10
3秒前
一叶知秋应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得30
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
无极微光应助tingting1采纳,获得20
5秒前
n嗯嗯发布了新的文献求助20
5秒前
文艺醉波完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480763
求助须知:如何正确求助?哪些是违规求助? 4581949
关于积分的说明 14382770
捐赠科研通 4510558
什么是DOI,文献DOI怎么找? 2471862
邀请新用户注册赠送积分活动 1458272
关于科研通互助平台的介绍 1431940