An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network

脑电图 图形 计算机科学 认知 人工智能 认知心理学 心理学 模式识别(心理学) 理论计算机科学 神经科学
作者
Cunbo Li,Tian Tang,Yue Pan,Lei Yang,Shuhan Zhang,Zhaojin Chen,Peiyang Li,Dongrui Gao,Huafu Chen,Fali Li,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 7130-7144 被引量:37
标识
DOI:10.1109/tnnls.2024.3405663
摘要

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system [Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN)] inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助echo采纳,获得10
刚刚
浮游应助研友_ZA7B7L采纳,获得10
刚刚
刚刚
小帅发布了新的文献求助10
刚刚
哈哈哈哈完成签到,获得积分10
1秒前
viauue9完成签到,获得积分10
1秒前
dynamoo应助YUJIALING采纳,获得10
1秒前
YYY发布了新的文献求助10
2秒前
乘风完成签到 ,获得积分10
2秒前
淡蓝时光完成签到,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
caffeine发布了新的文献求助10
2秒前
赘婿应助柒染采纳,获得10
3秒前
___赵发布了新的文献求助10
3秒前
我是老大应助蒸馏水采纳,获得10
3秒前
aha发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
lllllljmjmjm发布了新的文献求助10
3秒前
4秒前
Jasper应助美满忆文采纳,获得10
4秒前
热美式完成签到,获得积分10
5秒前
阿治完成签到,获得积分10
5秒前
5秒前
凯隐皇帝完成签到,获得积分20
5秒前
5秒前
zzz完成签到,获得积分10
6秒前
6秒前
lezard完成签到,获得积分10
6秒前
细腻沅完成签到,获得积分10
6秒前
8秒前
纸飞机完成签到 ,获得积分10
8秒前
joan完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
肘子发布了新的文献求助10
10秒前
阿治发布了新的文献求助10
10秒前
YYY完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812