An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network

脑电图 图形 计算机科学 认知 人工智能 认知心理学 心理学 模式识别(心理学) 理论计算机科学 神经科学
作者
Cunbo Li,Tian Tang,Yue Pan,Lei Yang,Shuhan Zhang,Zhaojin Chen,Peiyang Li,Dongrui Gao,Huafu Chen,Fali Li,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:13
标识
DOI:10.1109/tnnls.2024.3405663
摘要

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研小贩采纳,获得10
1秒前
殊桐完成签到,获得积分10
1秒前
拾陆发布了新的文献求助10
2秒前
2秒前
张雯思发布了新的文献求助10
3秒前
zyx174733发布了新的文献求助10
4秒前
鲤鱼小鸽子完成签到,获得积分10
5秒前
满意依白发布了新的文献求助10
6秒前
tttt关注了科研通微信公众号
6秒前
Lucas应助鸡块面采纳,获得10
7秒前
7秒前
搜集达人应助繁荣的菲音采纳,获得10
7秒前
吃吃发布了新的文献求助10
8秒前
linkman发布了新的文献求助10
8秒前
9秒前
彩色半烟完成签到,获得积分10
10秒前
zsm发布了新的文献求助10
10秒前
风筝关注了科研通微信公众号
11秒前
11秒前
研友_nxymlZ发布了新的文献求助10
11秒前
ling2001完成签到,获得积分10
11秒前
12秒前
13秒前
易达发布了新的文献求助30
13秒前
深情安青应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
yar应助科研通管家采纳,获得10
14秒前
王富贵发布了新的文献求助10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
yar应助科研通管家采纳,获得10
14秒前
情怀应助哈哈采纳,获得10
14秒前
Www完成签到,获得积分10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
jamesyang发布了新的文献求助30
14秒前
yar应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
15秒前
今后应助科研通管家采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075