Self-balancing Incremental Broad Learning System with privacy protection

MNIST数据库 计算机科学 机器学习 人工智能 再培训 加密 过程(计算) 渐进式学习 特征选择 数据挖掘 深度学习 计算机安全 操作系统 业务 国际贸易
作者
Weiwen Zhang,Ziyu Liu,Yifeng Jiang,Wuxing Chen,Bowen Zhao,Kaixiang Yang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:178: 106436-106436
标识
DOI:10.1016/j.neunet.2024.106436
摘要

Incremental learning algorithms have been developed as an efficient solution for fast remodeling in Broad Learning Systems (BLS) without a retraining process. Even though the structure and performance of broad learning are gradually showing superiority, private data leakage in broad learning systems is still a problem that needs to be solved. Recently, Multiparty Secure Broad Learning System (MSBLS) is proposed to allow two clients to participate training. However, privacy-preserving broad learning across multiple clients has received limited attention. In this paper, we propose a Self-Balancing Incremental Broad Learning System (SIBLS) with privacy protection by considering the effect of different data sample sizes from clients, which allows multiple clients to be involved in the incremental learning. Specifically, we design a client selection strategy to select two clients in each round by reducing the gap in the number of data samples in the incremental updating process. To ensure the security under the participation of multiple clients, we introduce a mediator in the data encryption and feature mapping process. Three classical datasets are used to validate the effectiveness of our proposed SIBLS, including MNIST, Fashion and NORB datasets. Experimental results show that our proposed SIBLS can have comparable performance with MSBLS while achieving better performance than federated learning in terms of accuracy and running time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
向南完成签到 ,获得积分10
2秒前
酣战酣战完成签到,获得积分10
2秒前
蔡继海发布了新的文献求助10
4秒前
4秒前
可耐的三德完成签到 ,获得积分10
5秒前
SciGPT应助天明采纳,获得10
5秒前
大模型应助成就的千凡采纳,获得10
6秒前
8秒前
充电宝应助宫野珏采纳,获得10
9秒前
zyy0605发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
12秒前
13秒前
lsy发布了新的文献求助10
14秒前
慕青应助酣战酣战采纳,获得10
14秒前
xcc发布了新的文献求助10
15秒前
轻松以寒发布了新的文献求助10
16秒前
16秒前
夏天的xia完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
代李辉发布了新的文献求助10
18秒前
沉静河马发布了新的文献求助10
19秒前
20秒前
柳叶洋完成签到,获得积分10
20秒前
yzzzz完成签到,获得积分10
20秒前
20秒前
21秒前
zyy0605完成签到,获得积分10
23秒前
天明发布了新的文献求助10
23秒前
廾匸发布了新的文献求助10
24秒前
24秒前
25秒前
26秒前
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787425
求助须知:如何正确求助?哪些是违规求助? 3333065
关于积分的说明 10258846
捐赠科研通 3048429
什么是DOI,文献DOI怎么找? 1673117
邀请新用户注册赠送积分活动 801635
科研通“疑难数据库(出版商)”最低求助积分说明 760308