Reciprocal Reward Influence Encourages Cooperation From Self-Interested Agents

互惠的 心理学 业务 语言学 哲学
作者
John L. Zhou,Weizhe Hong,Jonathan C. Kao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.01641
摘要

Emergent cooperation among self-interested individuals is a widespread phenomenon in the natural world, but remains elusive in interactions between artificially intelligent agents. Instead, na\"ive reinforcement learning algorithms typically converge to Pareto-dominated outcomes in even the simplest of social dilemmas. An emerging class of opponent-shaping methods have demonstrated the ability to reach prosocial outcomes by influencing the learning of other agents. However, they rely on higher-order derivatives through the predicted learning step of other agents or learning meta-game dynamics, which in turn rely on stringent assumptions over opponent learning rules or exponential sample complexity, respectively. To provide a learning rule-agnostic and sample-efficient alternative, we introduce Reciprocators, reinforcement learning agents which are intrinsically motivated to reciprocate the influence of an opponent's actions on their returns. This approach effectively seeks to modify other agents' $Q$-values by increasing their return following beneficial actions (with respect to the Reciprocator) and decreasing it after detrimental actions, guiding them towards mutually beneficial actions without attempting to directly shape policy updates. We show that Reciprocators can be used to promote cooperation in a variety of temporally extended social dilemmas during simultaneous learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助yeye采纳,获得10
1秒前
silence发布了新的文献求助10
2秒前
emchavezangel完成签到,获得积分10
3秒前
仓仓发布了新的文献求助10
4秒前
善良水壶完成签到,获得积分10
4秒前
john完成签到,获得积分20
5秒前
汉堡包应助kk采纳,获得10
5秒前
6秒前
尼尼发布了新的文献求助10
6秒前
bkagyin应助科研通管家采纳,获得10
8秒前
球球昂完成签到,获得积分10
8秒前
tll应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
隐形曼青应助能干的玉兰采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
Nico应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
朱光辉发布了新的文献求助10
9秒前
CAOHOU应助科研通管家采纳,获得10
9秒前
孙燕应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
11秒前
在水一方应助Yan采纳,获得10
12秒前
HK发布了新的文献求助10
13秒前
翻译度完成签到,获得积分10
16秒前
yeye发布了新的文献求助10
16秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117104
求助须知:如何正确求助?哪些是违规求助? 3655656
关于积分的说明 11575578
捐赠科研通 3358671
什么是DOI,文献DOI怎么找? 1845166
邀请新用户注册赠送积分活动 910636
科研通“疑难数据库(出版商)”最低求助积分说明 827016