Adulteration detection of edible oil by one‐class classification and outlier detection

食用油 异常检测 班级(哲学) 离群值 人工智能 模式识别(心理学) 计算机科学 数学 生物 食品科学
作者
Xinjing Dou,Fengqin Tu,Li Yu,Yong Yang,Fei Ma,Xuefang Wang,Du Wang,Liangxiao Zhang,Xiaoming Jiang,Peiwu Li
出处
期刊:Food frontiers [Wiley]
卷期号:5 (4): 1806-1818
标识
DOI:10.1002/fft2.395
摘要

Abstract Edible oil adulteration is a mostly practiced phenomenon. However, the traditional discriminant methods fail to detect oil adulteration involving more than one adulterant. Recently, one‐class classifiers were built for food or oil authentication. Unfortunately, as it is hard to determine the application domain of the one‐class classifier, high prediction error was obtained for real samples in market surveillance. In this study, a new method was developed based on one‐class classification and outlier detection for edible oil adulteration detection in market surveillance. The model population was constructed using Monte Carlo sampling of unidentified inspected samples to select the plateau region exhibiting the highest accumulated absolute centered residual (ACR) values. Subsequently, the number of models in the plateau region was validated by the theoretical ones calculated by the classical probability model. The models in the plateau region with the highest cumulative accumulated ACR values were used to identify adulterated oils. Furthermore, the cross‐validation was conducted by comparing identification results from two different Monte Carlo sampling ratios to ensure the accuracy of our method. Both single adulteration and multiple adulteration of peanut oils were prepared to validate our method. Moreover, this method was used to detect adulteration of sesame oils, which have already been identified by the markers in our previous study. The validation results of three datasets indicated that this method could effectively identify adulterated samples and therefore provide a novel solution for inspecting potential adulteration in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xing发布了新的文献求助10
2秒前
旅游家完成签到 ,获得积分10
2秒前
风中夜天完成签到 ,获得积分10
4秒前
qiuqiu完成签到 ,获得积分10
8秒前
msd2phd完成签到,获得积分10
10秒前
10秒前
11秒前
14秒前
白开水发布了新的文献求助10
15秒前
无非一念发布了新的文献求助10
17秒前
科研废物发布了新的文献求助10
19秒前
Lqiang完成签到,获得积分10
21秒前
无非一念完成签到,获得积分10
23秒前
希望天下0贩的0应助keke采纳,获得10
28秒前
33秒前
34秒前
36秒前
36秒前
Tracy.完成签到,获得积分10
37秒前
白开水完成签到,获得积分10
39秒前
93发布了新的文献求助30
41秒前
NorthWang完成签到,获得积分10
49秒前
49秒前
wenbo完成签到,获得积分0
50秒前
52秒前
52秒前
54秒前
zzq发布了新的文献求助10
55秒前
56秒前
废物自救发布了新的文献求助10
57秒前
乐观短靴发布了新的文献求助10
1分钟前
立军发布了新的文献求助200
1分钟前
yym完成签到,获得积分10
1分钟前
科研废物完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
小王好饿完成签到 ,获得积分10
1分钟前
WYN发布了新的文献求助10
1分钟前
气急败坏的卡尔王完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780355
求助须知:如何正确求助?哪些是违规求助? 3325680
关于积分的说明 10223949
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669024
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648