Adulteration detection of edible oil by one‐class classification and outlier detection

食用油 异常检测 班级(哲学) 离群值 人工智能 模式识别(心理学) 计算机科学 数学 生物 食品科学
作者
Xinjing Dou,Fengqin Tu,Li Yu,Yong Yang,Fei Ma,Xuefang Wang,Du Wang,Liangxiao Zhang,Xiaoming Jiang,Peiwu Li
出处
期刊:Food frontiers [Wiley]
卷期号:5 (4): 1806-1818 被引量:2
标识
DOI:10.1002/fft2.395
摘要

Abstract Edible oil adulteration is a mostly practiced phenomenon. However, the traditional discriminant methods fail to detect oil adulteration involving more than one adulterant. Recently, one‐class classifiers were built for food or oil authentication. Unfortunately, as it is hard to determine the application domain of the one‐class classifier, high prediction error was obtained for real samples in market surveillance. In this study, a new method was developed based on one‐class classification and outlier detection for edible oil adulteration detection in market surveillance. The model population was constructed using Monte Carlo sampling of unidentified inspected samples to select the plateau region exhibiting the highest accumulated absolute centered residual (ACR) values. Subsequently, the number of models in the plateau region was validated by the theoretical ones calculated by the classical probability model. The models in the plateau region with the highest cumulative accumulated ACR values were used to identify adulterated oils. Furthermore, the cross‐validation was conducted by comparing identification results from two different Monte Carlo sampling ratios to ensure the accuracy of our method. Both single adulteration and multiple adulteration of peanut oils were prepared to validate our method. Moreover, this method was used to detect adulteration of sesame oils, which have already been identified by the markers in our previous study. The validation results of three datasets indicated that this method could effectively identify adulterated samples and therefore provide a novel solution for inspecting potential adulteration in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Allen采纳,获得10
刚刚
刚刚
深情安青应助spy采纳,获得10
1秒前
Yuuuu完成签到 ,获得积分10
1秒前
1秒前
小荔枝完成签到,获得积分10
1秒前
long0809完成签到,获得积分10
1秒前
2秒前
keaid完成签到 ,获得积分10
2秒前
111完成签到 ,获得积分10
2秒前
huang发布了新的文献求助10
3秒前
3秒前
4秒前
zhc发布了新的文献求助10
4秒前
呜呼啦呼完成签到 ,获得积分10
4秒前
无望完成签到,获得积分10
5秒前
圈圈完成签到,获得积分10
5秒前
6秒前
YifanWang应助一个小胖子采纳,获得10
6秒前
6秒前
xq完成签到,获得积分10
6秒前
6秒前
所所应助潇笑采纳,获得10
7秒前
海光发布了新的文献求助10
7秒前
SYLH应助酷酷筝采纳,获得10
7秒前
7秒前
2425完成签到,获得积分10
8秒前
hkunyu完成签到 ,获得积分20
8秒前
wangerer发布了新的文献求助10
9秒前
昔年完成签到 ,获得积分10
9秒前
迷人听双完成签到,获得积分20
9秒前
细心的孤萍完成签到,获得积分10
9秒前
9秒前
吴建文完成签到 ,获得积分10
10秒前
singber完成签到,获得积分10
10秒前
小马想毕业完成签到,获得积分10
10秒前
11秒前
含蓄心锁发布了新的文献求助10
11秒前
11秒前
任品贤发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914124
求助须知:如何正确求助?哪些是违规求助? 3459465
关于积分的说明 10905829
捐赠科研通 3185926
什么是DOI,文献DOI怎么找? 1761210
邀请新用户注册赠送积分活动 851890
科研通“疑难数据库(出版商)”最低求助积分说明 793041