Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems

觅食 元启发式 饲料 水准点(测量) 季节性繁殖者 趋同(经济学) 计算机科学 算法 人工智能 机器学习 生态学 地理 生物 大地测量学 经济增长 经济
作者
Jeffrey O. Agushaka,Absalom E. Ezugwu,Apu Kumar Saha,Jayanta Pal,Laith Abualigah,Seyedali Mirjalili
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (11): e31629-e31629 被引量:52
标识
DOI:10.1016/j.heliyon.2024.e31629
摘要

This paper introduces a new metaheuristic technique known as the Greater Cane Rat Algorithm (GCRA) for addressing optimization problems. The optimization process of GCRA is inspired by the intelligent foraging behaviors of greater cane rats during and off mating season. Being highly nocturnal, they are intelligible enough to leave trails as they forage through reeds and grass. Such trails would subsequently lead to food and water sources and shelter. The exploration phase is achieved when they leave the different shelters scattered around their territory to forage and leave trails. It is presumed that the alpha male maintains knowledge about these routes, and as a result, other rats modify their location according to this information. Also, the males are aware of the breeding season and separate themselves from the group. The assumption is that once the group is separated during this season, the foraging activities are concentrated within areas of abundant food sources, which aids the exploitation. Hence, the smart foraging paths and behaviors during the mating season are mathematically represented to realize the design of the GCR algorithm and carry out the optimization tasks. The performance of GCRA is tested using twenty-two classical benchmark functions, ten CEC 2020 complex functions, and the CEC 2011 real-world continuous benchmark problems. To further test the performance of the proposed algorithm, six classic problems in the engineering domain were used. Furthermore, a thorough analysis of computational and convergence results is presented to shed light on the efficacy and stability levels of GCRA. The statistical significance of the results is compared with ten state-of-the-art algorithms using Friedman's and Wilcoxon's signed rank tests. These findings show that GCRA produced optimal or nearly optimal solutions and evaded the trap of local minima, distinguishing it from the rival optimization algorithms employed to tackle similar problems. The GCRA optimizer source code is publicly available at: https://www.mathworks.com/matlabcentral/fileexchange/165241-greater-cane-rat-algorithm-gcra
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定采波完成签到,获得积分10
刚刚
zhoupeiyan423发布了新的文献求助10
刚刚
江小鱼在查文献完成签到,获得积分10
1秒前
kiwiii发布了新的文献求助10
1秒前
淡淡的豁完成签到,获得积分0
1秒前
ZLQ完成签到,获得积分10
1秒前
爱在深秋完成签到,获得积分10
1秒前
忘崽子小拳头完成签到,获得积分10
1秒前
霡霂完成签到,获得积分10
2秒前
打工人一枚完成签到,获得积分10
2秒前
蛇從革发布了新的文献求助30
2秒前
骑着火车撵火箭完成签到,获得积分10
3秒前
xinmindeng发布了新的文献求助10
3秒前
读者完成签到,获得积分10
3秒前
aki空中飞跃完成签到,获得积分10
4秒前
4秒前
3123939715完成签到,获得积分10
5秒前
wjy完成签到,获得积分10
5秒前
考研小白完成签到,获得积分10
5秒前
想发一篇贾克斯完成签到,获得积分10
5秒前
只只完成签到,获得积分10
5秒前
司空元正完成签到 ,获得积分10
6秒前
6秒前
桑尼号完成签到,获得积分10
6秒前
LFF完成签到,获得积分10
7秒前
7秒前
Ava应助辛勤采柳采纳,获得10
8秒前
张甜完成签到,获得积分10
8秒前
小二郎应助整齐千柳采纳,获得10
8秒前
8秒前
qu完成签到 ,获得积分20
9秒前
小马甲应助66135采纳,获得10
11秒前
小陀螺完成签到,获得积分10
11秒前
12秒前
李佳完成签到,获得积分10
12秒前
说书人完成签到,获得积分10
12秒前
13秒前
jk完成签到,获得积分10
13秒前
哈哈哈6056完成签到,获得积分10
13秒前
程公子完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080063
求助须知:如何正确求助?哪些是违规求助? 4298076
关于积分的说明 13390059
捐赠科研通 4121584
什么是DOI,文献DOI怎么找? 2257188
邀请新用户注册赠送积分活动 1261474
关于科研通互助平台的介绍 1195636