整合素
化学
压电1
纤维
生物医学工程
生物物理学
细胞生物学
细胞
医学
生物
生物化学
受体
机械敏感通道
离子通道
有机化学
作者
Jinghong Yang,Runli Li,Xiaoshuang Wang,Dawei Lü,Weichang Li,Yan Wang
标识
DOI:10.1186/s12951-025-03653-y
摘要
Irregular alveolar bone defects pose persistent clinical challenges due to their complex morphology and the lack of biomaterials that simultaneously provide structural integrity, biocompatibility, and dynamic osteoinductive potential. Herein, we report a fiber-reinforced, dual-network hydrogel system (OHADN fiber@Yoda1 hydrogel) engineered to recapitulate mechanobiological cues for enhanced bone regeneration. This injectable hydrogel integrates oxidized hyaluronic acid (OHA) crosslinked with Yoda1-loaded PLGA-collagen fiber fragments and stabilized via catechol-Fe³⁺ coordination, forming a robust and self-healing structure. The fiber network enhances matrix stiffness and sustains Yoda1 release, promoting PIEZO1 activation in stem cells and enabling persistent mechanotransduction. In vitro, this system effectively regulates macrophage polarization, maintains cellular tension homeostasis, and significantly upregulates osteogenic markers via the PIEZO1-ITGα5 axis. Transcriptomic profiling and mechanistic validation revealed that focal adhesion and cytoskeletal signaling pathways are enriched upon hydrogel treatment. In a rat alveolar bone defect model, the OHADN fiber@Yoda1 hydrogel demonstrated superior bone volume restoration and trabecular architecture compared to conventional materials. This work presents a promising paradigm for spatiotemporal control of osteoimmune microenvironments through mechanoresponsive biomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI