Quantifying cumulative cooling threshold of greenspaces using a newly developed 3D model across global cities

遥感 环境科学 气候学 气象学 地质学 地理
作者
Siqi Zhou,Zhaowu Yu,Wanben Wu,Wen-jun Yang,Yujia Zhang,Yingying Hao,Yuan Qi,Dong-Fan Xu,Jinyu Hu,Bin Zhao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:328: 114867-114867 被引量:9
标识
DOI:10.1016/j.rse.2025.114867
摘要

Urban greenspaces are widely recognized as an effective nature-based strategy to mitigate urban heat. However, previous studies have often oversimplified the cooling process of greenspaces, leaving their cumulative cooling effect insufficiently quantified. To address this gap, we developed a novel three-dimensional (3D) quantitative model to evaluate spatially accumulated cooling benefits. A total of 668 greenspace patches across 37 cities globally, representing varying climatic conditions, were selected. We then tested the relative importance of intrinsic drivers (landscape composition and spatial configuration) versus built environment drivers (landscape patterns of surrounding areas) in explaining the cooling effect. The results indicate that greenspaces provide an average cumulative cooling effect of 4.92 °C on the surrounding land surface temperature (LST), with a maximum reduction of up to 25.3 °C, far exceeding expectations. The cooling effect is primarily and positively influenced by patch area, the intrinsic green-blue proportion, and surrounding socioeconomic characteristics. More importantly, we emphasize the necessity of an accumulated perspective in the threshold value of efficiency (TVoE) assessments, as existing quantitative frameworks tend to largely underestimate the cooling benefits of large greenspaces. Our analysis reveals a U-shaped relationship between the aridity index and TVoE. To maximize cumulative cooling efficiency, optimal greenspace areas were identified as 2.25 ha for arid cities, 1.48 ha for semi-arid cities, 1.64 ha for dry sub-humid cities, and 1.8 ha for humid cities. This work opens new avenues for quantifying cumulative cooling effect from a 3D perspective, which may also scientifically inform urban greenspace planning and climate adaptation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山谷发布了新的文献求助10
刚刚
kaiqiang发布了新的文献求助10
刚刚
刚刚
zhouzhou发布了新的文献求助10
1秒前
kk完成签到,获得积分10
1秒前
沉默寻凝发布了新的文献求助10
1秒前
2秒前
2秒前
杨德凯发布了新的文献求助10
2秒前
喜悦发卡发布了新的文献求助10
3秒前
3秒前
4秒前
Owen应助雪白元槐采纳,获得10
4秒前
4秒前
小玉发布了新的文献求助10
5秒前
晶晶发布了新的文献求助10
6秒前
Jasper应助liuxiaomeng采纳,获得10
6秒前
6秒前
6秒前
流体离子发电机完成签到,获得积分10
7秒前
CQMZY_2025完成签到,获得积分10
7秒前
aaa北大街发布了新的文献求助10
7秒前
成就迎梅完成签到,获得积分10
7秒前
ly613发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
陆仓颉完成签到,获得积分10
8秒前
共享精神应助yyan采纳,获得10
8秒前
可爱的函函应助myc采纳,获得10
9秒前
眼睛大书桃完成签到,获得积分10
9秒前
ppp发布了新的文献求助10
10秒前
10秒前
我是老大应助喜悦发卡采纳,获得10
10秒前
在水一方应助怡然之玉采纳,获得10
10秒前
11秒前
zhouzhou完成签到,获得积分10
11秒前
汉堡包应助夏cai采纳,获得10
13秒前
杨德凯完成签到,获得积分10
13秒前
13秒前
健壮鸡翅完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709188
求助须知:如何正确求助?哪些是违规求助? 5193261
关于积分的说明 15256131
捐赠科研通 4861993
什么是DOI,文献DOI怎么找? 2609827
邀请新用户注册赠送积分活动 1560233
关于科研通互助平台的介绍 1517986