已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Strong Partitioning and a Machine Learning Approximation for Accelerating the Global Optimization of Nonconvex Quadratically Constrained Quadratic Programs

二次增长 二次方程 二次约束二次规划 二次规划 数学优化 二次模型 计算机科学 数学 算法 机器学习 响应面法 几何学
作者
Rohit Kannan,Harsha Nagarajan,Deepjyoti Deka
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0424
摘要

We learn optimal instance-specific heuristics for the global minimization of nonconvex quadratically constrained quadratic programs (QCQPs). Specifically, we consider partitioning-based convex mixed-integer programming relaxations for nonconvex QCQPs and propose the novel problem of strong partitioning to optimally partition variable domains without sacrificing global optimality. Because solving this max-min strong partitioning problem exactly can be very challenging, we design a local optimization method that leverages generalized gradients of the value function of its inner-minimization problem. However, even solving the strong partitioning problem to local optimality can be time consuming. To address this, we propose a simple and practical machine learning (ML) approximation for homogeneous families of QCQPs. Motivated by practical applications, we conduct a detailed computational study using the open-source global solver Alpine to evaluate the effectiveness of our ML approximation in accelerating the repeated solution of homogeneous QCQPs with fixed structure. Our study considers randomly generated QCQP families, including instances of the pooling problem, that are benchmarked using state-of-the-art global optimization software. Numerical experiments demonstrate that our ML approximation of strong partitioning reduces Alpine’s solution time by a factor of 2–4.5 on average, with maximum reduction factors ranging from 10 to 200 across these QCQP families. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms—Continuous. Funding: The authors gratefully acknowledge funding from Los Alamos National Laboratory’s Center for Nonlinear Studies and the U.S. Department of Energy’s Laboratory Directed Research and Development program [Grants 20230091ER (Project “Learning to Accelerate Global Solutions for Non-convex Optimization”) and 20210078DR (Project “The Optimization of Machine Learning: Imposing Requirements on Artificial Intelligence”)]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0424 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0424 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助mickle采纳,获得10
1秒前
CR7发布了新的文献求助10
1秒前
2秒前
舒适静丹发布了新的文献求助10
2秒前
2秒前
cc与车夫发布了新的文献求助10
3秒前
烧炭匠发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
cmm完成签到,获得积分20
6秒前
善学以致用应助琪琪采纳,获得10
7秒前
国服躺赢完成签到,获得积分10
7秒前
希望天下0贩的0应助牛牛采纳,获得10
7秒前
纯良可可豆完成签到,获得积分10
7秒前
奂毛发布了新的文献求助10
7秒前
8秒前
神勇的星星完成签到,获得积分10
8秒前
舒适静丹完成签到,获得积分20
9秒前
丑八怪发布了新的文献求助10
9秒前
SophiaMX发布了新的文献求助10
10秒前
uian完成签到,获得积分20
10秒前
10秒前
风清扬发布了新的文献求助30
10秒前
大方的羊青完成签到,获得积分10
10秒前
11秒前
天冬完成签到,获得积分10
12秒前
12秒前
13秒前
隐形曼青应助zongrending采纳,获得10
14秒前
李爱国应助不扯先生采纳,获得10
15秒前
皮皮团发布了新的文献求助10
15秒前
浮游应助miragemaster采纳,获得10
15秒前
华仔应助arrebol采纳,获得10
16秒前
浮游应助有意义采纳,获得10
16秒前
深情安青应助有意义采纳,获得10
16秒前
XT关闭了XT文献求助
17秒前
西瓜完成签到 ,获得积分10
17秒前
dayangegege发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394253
求助须知:如何正确求助?哪些是违规求助? 4515501
关于积分的说明 14054571
捐赠科研通 4426760
什么是DOI,文献DOI怎么找? 2431463
邀请新用户注册赠送积分活动 1423610
关于科研通互助平台的介绍 1402559