数学
数学分析
一维稳态扩散的有限体积法
扩散方程
扩散
空格(标点符号)
波动方程
有限体积法
体积热力学
反常扩散
分数阶微积分
偏微分方程
机械
物理
热力学
创新扩散
服务(商务)
知识管理
哲学
语言学
经济
计算机科学
经济
数值偏微分方程
作者
Somayeh Nasiri Mofrad,Akbar Mohebbi
摘要
ABSTRACT In the current paper, we investigate the numerical solution of space‐time fractional tempered diffusion‐wave equation. We use the Crank‐Nicolson scheme to discretize this equation in temporal direction and a finite difference method of order to approximate the tempered fractional integral operator. In spatial direction, we first propose a finite volume method using piecewise‐linear basis functions to obtain fully discrete scheme. Then, by employing some concepts based on the eigenvalues of matrices, we prove the convergence and unconditional stability of the proposed method. To increase the accuracy, we propose a quadratic finite volume method using piecewise quadratic basis functions. To show the accuracy, superiority, and efficiency of the proposed method, we present two test problems and compare the results with some methods developed in literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI