End-cloud collaboration method enables accurate state of health and remaining useful life online estimation in lithium-ion batteries

云计算 卡尔曼滤波器 计算机科学 过程(计算) 锂离子电池 可靠性(半导体) 健康状况 实时计算 可靠性工程 模拟 人工智能 电池(电) 工程类 物理 操作系统 量子力学 功率(物理)
作者
Bin Ma,Lisheng Zhang,Hanqing Yu,Bosong Zou,Wentao Wang,Cheng Zhang,Shichun Yang,Xinhua Liu
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:82: 1-17 被引量:32
标识
DOI:10.1016/j.jechem.2023.02.052
摘要

Though the lithium-ion battery is universally applied, the reliability of lithium-ion batteries remains a challenge due to various physicochemical reactions, electrode material degradation, and even thermal runaway. Accurate estimation and prediction of battery health conditions are crucial for battery safety management. In this paper, an end-cloud collaboration method is proposed to approach the track of battery degradation process, integrating end-side empirical model with cloud-side data-driven model. Based on ensemble learning methods, the data-driven model is constructed by three base models to obtain cloud-side highly accurate results. The double exponential decay model is utilized as an empirical model to output highly real-time prediction results. With Kalman filter, the prediction results of end-side empirical model can be periodically updated by highly accurate results of cloud-side data-driven model to obtain highly accurate and real-time results. Subsequently, the whole framework can give an accurate prediction and tracking of battery degradation, with the mean absolute error maintained below 2%. And the execution time on the end side can reach 261 μs. The proposed end-cloud collaboration method has the potential to approach highly accurate and highly real-time estimation for battery health conditions during battery full life cycle in architecture of cyber hierarchy and interactional network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘博龙完成签到,获得积分10
刚刚
1秒前
3秒前
bkagyin应助C7_采纳,获得10
4秒前
隐形曼青应助daidai采纳,获得10
4秒前
叉叉完成签到,获得积分10
4秒前
4秒前
Dream完成签到,获得积分10
5秒前
5秒前
mmyhn发布了新的文献求助10
6秒前
Cici完成签到 ,获得积分10
6秒前
阳光萝发布了新的文献求助10
7秒前
字斟句酌发布了新的文献求助10
7秒前
Dream发布了新的文献求助10
8秒前
今后应助丢丢采纳,获得10
9秒前
ding应助快来拾糖采纳,获得10
10秒前
11秒前
11秒前
爱笑剑心完成签到,获得积分10
13秒前
14秒前
Angela完成签到,获得积分10
14秒前
xl完成签到 ,获得积分10
15秒前
16秒前
科研通AI5应助张靖超采纳,获得10
16秒前
粗心的绾绾应助夏洛克采纳,获得10
16秒前
小谢完成签到 ,获得积分10
18秒前
思源应助静静优柔采纳,获得10
19秒前
刻苦天宇发布了新的文献求助10
19秒前
我是老大应助kyrie采纳,获得10
20秒前
内向东蒽完成签到 ,获得积分10
20秒前
烟酒生发布了新的文献求助10
21秒前
22秒前
动听的琴完成签到,获得积分10
22秒前
23秒前
lucky发布了新的文献求助10
27秒前
28秒前
哇呀呀发布了新的文献求助10
28秒前
刻苦天宇完成签到,获得积分10
30秒前
飞快的高烽完成签到,获得积分10
31秒前
33秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826664
求助须知:如何正确求助?哪些是违规求助? 3368977
关于积分的说明 10453373
捐赠科研通 3088541
什么是DOI,文献DOI怎么找? 1699175
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148