控制理论(社会学)
人工神经网络
模型预测控制
跟踪(教育)
计算
趋同(经济学)
工程类
反向
计算机科学
控制工程
控制(管理)
算法
人工智能
数学
经济增长
教育学
经济
心理学
几何学
作者
K. Shafeeque Ahmed,Peng Yan,Zhiming Zhang
标识
DOI:10.1177/1045389x231190819
摘要
This paper presents an intelligent modified predictive control approach with squeezed search space, for tracking control of piezo-actuated nano stage. The model obtained from the gray box neural network is first dynamically linearized to avoid calculation of inverse hysteresis model. The optimum control values of the previous control cycle are used to construct a squeezed search space, which reduces the computation burden and improves the tracking control performance. The effectiveness of the proposed scheme is verified theoretically by deriving a convergence analysis and by experimental results. The results show that the proposed approach significantly improves the dynamic tracking performance for high-frequency reference signals than existing results in the literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI