A Pixel-Level Segmentation Convolutional Neural Network Based on Global and Local Feature Fusion for Surface Defect Detection

卷积神经网络 计算机科学 特征(语言学) 人工智能 分割 模式识别(心理学) 特征提取 像素 交叉口(航空) 图像分割 计算机视觉 工程类 哲学 语言学 航空航天工程
作者
Lei Zuo,Hongyong Xiao,Long Wen,Liang Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-10 被引量:7
标识
DOI:10.1109/tim.2023.3323004
摘要

Surface defect detection (SDD) is a fundamental task in smart industry to ensure the product quality. Due to the complexity and diversity of the industrial scenes and the low contrast and tiny sizes of the defect, it is still difficult to accurately segment the defect. To overcome these issues, this research studied the pixel-level segmentation convolutional neural network based on global and local defect information for surface defect detection. Firstly, the low- and high-level features are extracted as the multi-scale network (MMPA-Net) to enrich the defect features information. Secondly, the global and local feature fusion with the global mapping branch module is developed to gradually refine the defect details to promote the detection of defects with different sizes and shapes. Thirdly, the deep supervision is applied to the global feature map and multi-scale prediction maps to train MMPA-Net. MMPA-Net has been conducted on three public SDD datasets, and the results show that MMPA-Net has achieved state-of-the-art results on the intersection of the union (IoU) by comparing with other DL methods (NEU-Seg: 86.62%, DAGM 2007: 87.94%, MT: 84.23%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
严zz发布了新的文献求助10
1秒前
充电宝应助跳跃的翼采纳,获得10
1秒前
yangling0124发布了新的文献求助10
1秒前
负责月光发布了新的文献求助10
1秒前
叶燕完成签到 ,获得积分10
2秒前
kk发布了新的文献求助10
2秒前
2秒前
LIN_YX发布了新的文献求助10
3秒前
闪闪的鹏博完成签到,获得积分10
3秒前
3秒前
wind发布了新的文献求助10
3秒前
mhlxxx完成签到,获得积分10
3秒前
3秒前
4秒前
领导范儿应助帅气纸飞机采纳,获得10
4秒前
研友_48yxXZ发布了新的文献求助10
4秒前
CC发布了新的文献求助10
4秒前
5秒前
07完成签到,获得积分10
6秒前
丹丹丹发布了新的文献求助10
6秒前
闻风听雨发布了新的文献求助10
7秒前
7秒前
健康的涔发布了新的文献求助22
8秒前
文静发布了新的文献求助10
8秒前
欣喜的冰薇完成签到,获得积分10
9秒前
开心薯片完成签到,获得积分10
11秒前
SY发布了新的文献求助10
12秒前
FashionBoy应助布鲁采纳,获得10
12秒前
明月发布了新的文献求助10
12秒前
NexusExplorer应助雨诺采纳,获得10
13秒前
席松完成签到,获得积分10
14秒前
李爱国应助发光的萤火虫采纳,获得10
14秒前
Cloud发布了新的文献求助10
14秒前
云雨完成签到 ,获得积分10
14秒前
15秒前
mhlxxx发布了新的文献求助10
15秒前
文静完成签到,获得积分10
15秒前
yangling0124完成签到,获得积分10
15秒前
海东来应助研友_48yxXZ采纳,获得30
15秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063641
求助须知:如何正确求助?哪些是违规求助? 3602110
关于积分的说明 11439939
捐赠科研通 3325242
什么是DOI,文献DOI怎么找? 1827956
邀请新用户注册赠送积分活动 898473
科研通“疑难数据库(出版商)”最低求助积分说明 819084