An integrated transcriptomic cell atlas of human neural organoids

类有机物 人脑 转录组 生物 诱导多能干细胞 计算生物学 电池类型 计算机科学 神经科学 细胞 胚胎干细胞 遗传学 基因 基因表达
作者
Zhisong He,Leander Dony,Jonas Simon Fleck,Artur Szałata,Katelyn X. Li,Irena Slišković,Hsiu‐Chuan Lin,Małgorzata Santel,Alexander Atamian,Giorgia Quadrato,Jieran Sun,Sergiu P. Paşca,J. Gray Camp,Fabian J. Theis,Barbara Treutlein
标识
DOI:10.1101/2023.10.05.561097
摘要

Neural tissues generated from human pluripotent stem cells in vitro (known as neural organoids) are becoming useful tools to study human brain development, evolution and disease. The characterization of neural organoids using single-cell genomic methods has revealed a large diversity of neural cell types with molecular signatures similar to those observed in primary human brain tissue. However, it is unclear which domains of the human nervous system are covered by existing protocols. It is also difficult to quantitatively assess variation between protocols and the specific cell states in organoids as compared to primary counterparts. Single-cell transcriptome data from primary tissue and neural organoids derived with guided or un-guided approaches and under diverse conditions combined with large-scale integrative analyses make it now possible to address these challenges. Recent advances in computational methodology enable the generation of integrated atlases across many data sets. Here, we integrated 36 single-cell transcriptomics data sets spanning 26 protocols into one integrated human neural organoid cell atlas (HNOCA) totaling over 1.7 million cells. We harmonize cell type annotations by incorporating reference data sets from the developing human brain. By mapping to the developing human brain reference, we reveal which primary cell states have been generated in vitro, and which are under-represented. We further compare transcriptomic profiles of neuronal populations in organoids to their counterparts in the developing human brain. To support rapid organoid phenotyping and quantitative assessment of new protocols, we provide a programmatic interface to browse the atlas and query new data sets, and showcase the power of the atlas to annotate new query data sets and evaluate new organoid protocols. Taken together, the HNOCA will be useful to assess the fidelity of organoids, characterize perturbed and diseased states and facilitate protocol development in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaxiao发布了新的文献求助10
刚刚
SciGPT应助渊思采纳,获得10
刚刚
袁袁完成签到,获得积分10
刚刚
arabidopsis完成签到,获得积分10
1秒前
神猪发布了新的文献求助10
2秒前
2秒前
jie完成签到,获得积分10
3秒前
wys完成签到,获得积分10
4秒前
mwm完成签到 ,获得积分10
5秒前
5秒前
Bella发布了新的文献求助10
5秒前
5秒前
lh完成签到,获得积分10
5秒前
6秒前
zhangsir发布了新的文献求助10
6秒前
8秒前
9秒前
sdshi发布了新的文献求助10
10秒前
zyj发布了新的文献求助10
10秒前
TN举报朱博超求助涉嫌违规
11秒前
迷人素应助不负卿望采纳,获得10
13秒前
liuJX发布了新的文献求助30
13秒前
leodu完成签到,获得积分10
16秒前
miracle1005发布了新的文献求助10
16秒前
英俊的铭应助科研通管家采纳,获得200
16秒前
蛇從革应助科研通管家采纳,获得100
16秒前
烟花应助执着的松鼠采纳,获得30
16秒前
任性映秋应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得30
16秒前
蛇從革应助科研通管家采纳,获得30
16秒前
任性映秋应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
Gauss应助科研通管家采纳,获得30
17秒前
老阎应助科研通管家采纳,获得30
17秒前
kongzhounandu应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得30
17秒前
17秒前
无花果应助科研通管家采纳,获得30
17秒前
高分求助中
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088526
求助须知:如何正确求助?哪些是违规求助? 3627311
关于积分的说明 11501378
捐赠科研通 3340158
什么是DOI,文献DOI怎么找? 1836199
邀请新用户注册赠送积分活动 904264
科研通“疑难数据库(出版商)”最低求助积分说明 822174