Robust and Efficient Trajectory Planning for Formation Flight in Dense Environments

计算机科学 运动规划 群体行为 避障 稳健性(进化) 机器人 人工智能 分布式计算 移动机器人 生物化学 化学 基因
作者
Lun Quan,Longji Yin,Tingrui Zhang,Mingyang Wang,Ruilin Wang,Sheng Zhong,Xin Zhou,Yanjun Cao,Chao Xu,Fei Gao
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 4785-4804 被引量:30
标识
DOI:10.1109/tro.2023.3301295
摘要

Formation flight has a vast potential for aerial robot swarms in various applications. However, the existing methods lack the capability to achieve fully autonomous large-scale formation flight in dense environments. To bridge the gap, we present a complete formation flight system that effectively integrates real-world constraints into aerial formation navigation. This article proposes a differentiable graph-based metric to quantify the overall similarity error between formations. This metric is invariant to rotation, translation, and scaling, providing more freedom for formation coordination. We design a distributed trajectory optimization framework that considers formation similarity, obstacle avoidance, and dynamic feasibility. The optimization is decoupled to make large-scale formation flights computationally feasible. To improve the elasticity of formation navigation in highly constrained scenes, we present a swarm reorganization method that adaptively adjusts the formation parameters and task assignments by generating local navigation goals. A novel swarm agreement strategy called global-remap-local-replan and a formation-level path planner is proposed in this article to coordinate the global planning and local trajectory optimizations.To validate the proposed method, we design comprehensive benchmarks and simulations with other cutting-edge works in terms of adaptability, predictability, elasticity, resilience, and efficiency. Finally, integrated with palm-sized swarm platforms with onboard computers and sensors, the proposed method demonstrates its efficiency and robustness by achieving the largest scale formation flight in dense outdoor environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
purple完成签到 ,获得积分10
刚刚
小博完成签到,获得积分10
1秒前
1秒前
安的沛白发布了新的文献求助10
1秒前
2秒前
又甘又刻发布了新的文献求助10
2秒前
爬不起来发布了新的文献求助10
2秒前
岁岁完成签到,获得积分10
3秒前
yi关注了科研通微信公众号
4秒前
4秒前
Owen应助ying采纳,获得10
4秒前
炙热秋翠发布了新的文献求助10
4秒前
英俊的铭应助xiaoyi采纳,获得10
5秒前
Jasper应助科研小白采纳,获得10
5秒前
软曲奇发布了新的文献求助10
5秒前
DD完成签到,获得积分10
6秒前
wyby完成签到,获得积分20
6秒前
呓语关注了科研通微信公众号
6秒前
包子完成签到,获得积分10
7秒前
岁岁发布了新的文献求助10
7秒前
李爱国应助清圆527采纳,获得10
7秒前
等度发布了新的文献求助30
8秒前
8秒前
8秒前
小录完成签到 ,获得积分10
8秒前
科研通AI6应助生科进行中采纳,获得10
9秒前
夜小娘发布了新的文献求助10
9秒前
绳索上行走完成签到,获得积分20
9秒前
9秒前
幽默人生发布了新的文献求助30
9秒前
小蘑菇应助炙热秋翠采纳,获得10
10秒前
10秒前
judy891zhu完成签到,获得积分10
10秒前
默默的弼完成签到 ,获得积分10
11秒前
11秒前
科研小白完成签到,获得积分10
11秒前
YH_Z完成签到 ,获得积分10
11秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059034
求助须知:如何正确求助?哪些是违规求助? 4283912
关于积分的说明 13349986
捐赠科研通 4101331
什么是DOI,文献DOI怎么找? 2245425
邀请新用户注册赠送积分活动 1251203
关于科研通互助平台的介绍 1181858