scMultiGAN: cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks

插补(统计学) 计算机科学 可扩展性 人工智能 缺少数据 聚类分析 数据挖掘 生成语法 机器学习 模式识别(心理学) 数据库
作者
Tao Wang,Hui Zhao,Yungang Xu,Yongtian Wang,Xuequn Shang,Jiajie Peng,Bing Xiao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6)
标识
DOI:10.1093/bib/bbad384
摘要

The emergence of single-cell RNA sequencing (scRNA-seq) technology has revolutionized the identification of cell types and the study of cellular states at a single-cell level. Despite its significant potential, scRNA-seq data analysis is plagued by the issue of missing values. Many existing imputation methods rely on simplistic data distribution assumptions while ignoring the intrinsic gene expression distribution specific to cells. This work presents a novel deep-learning model, named scMultiGAN, for scRNA-seq imputation, which utilizes multiple collaborative generative adversarial networks (GAN). Unlike traditional GAN-based imputation methods that generate missing values based on random noises, scMultiGAN employs a two-stage training process and utilizes multiple GANs to achieve cell-specific imputation. Experimental results show the efficacy of scMultiGAN in imputation accuracy, cell clustering, differential gene expression analysis and trajectory analysis, significantly outperforming existing state-of-the-art techniques. Additionally, scMultiGAN is scalable to large scRNA-seq datasets and consistently performs well across sequencing platforms. The scMultiGAN code is freely available at https://github.com/Galaxy8172/scMultiGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助moji采纳,获得10
1秒前
1秒前
2秒前
2秒前
小二郎完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
小企发布了新的文献求助10
4秒前
JN发布了新的文献求助10
4秒前
彳亍而行发布了新的文献求助10
4秒前
5秒前
共享精神应助背后惜文采纳,获得20
5秒前
lc发布了新的文献求助10
5秒前
寒冷的咖啡完成签到,获得积分10
5秒前
5秒前
6秒前
blueming发布了新的文献求助10
6秒前
科研通AI5应助南风采纳,获得10
7秒前
7秒前
张陶求发布了新的文献求助10
7秒前
7秒前
wwhhgg11发布了新的文献求助10
8秒前
jovrtic发布了新的文献求助10
9秒前
9秒前
zzzz完成签到 ,获得积分10
10秒前
平淡的半青完成签到 ,获得积分10
11秒前
11秒前
lc完成签到,获得积分10
11秒前
C Z P发布了新的文献求助10
11秒前
王一完成签到,获得积分10
11秒前
jianguo发布了新的文献求助10
11秒前
猪猪hero发布了新的文献求助10
12秒前
核桃应助JN采纳,获得10
12秒前
13秒前
张陶求完成签到,获得积分10
13秒前
13秒前
土豪的怀薇完成签到,获得积分10
13秒前
领导范儿应助LL采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409