An Adaptive Point Cloud Registration Algorithm Based on Cross Optimization of Local Feature Point Normal and Global Surface

点云 算法 特征(语言学) 点(几何) 计算机视觉 曲面(拓扑) 计算机科学 数学 人工智能 几何学 哲学 语言学
作者
Lei Li,Shuang Mei,Weijie Ma,Xingyue Liu,Jichun Li,Guojun Wen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6434-6447 被引量:1
标识
DOI:10.1109/tase.2023.3325466
摘要

The decline of point cloud registration efficiency caused by bad initial position and disordered registration direction has not been effectively solved. Herein, we propose a robust registration algorithm to tackle these drawbacks. First, a novel automatic point cloud alignment strategy considering the normal vector of feature points is demonstrated. This strategy ensures fast convergence in the case of bad initial position. Second, we introduce a cross iterative optimization strategy, which combines the alignment algorithm with an improved ICP (Point-Surface ICP) version based on surface constraints to complete faster and more orderly registration. In order to reduce the computational complexity, we present a linearization for the Point-Surface ICP based on Rodrigues rotation parameterization with the small incremental rotation assumption. In the elimination of outliers, we use the normal distribution of multiple errors to automatically select the threshold interval. Eventually, a large number of experiments are conducted on some public data-sets for performance evaluation of the as-proposed algorithm. Compared with other optimal methods, our method achieves a 17.1 $\%$ and 58.98 $\%$ increase in registration accuracy in Dragon dataset and Armadillo dataset, respectively, indicating the higher superiority of our algorithm. Note to Practitioners —This paper was motivated by solving the problem of registering two PCs. Most existing approaches generally can't solve the decline of point cloud registration efficiency caused by bad initial position and disordered registration direction. In this paper, the position information and normal vector information of feature points are considered as the constraint conditions of pose alignment, and the improved ICP is used for further registration. In order to reduce the influence of outliers, an adaptive comprehensive elimination condition is proposed. We have demonstrated through extensive experiments that the proposed registration algorithm achieves improved accuracy, robustness to point clouds of different scales, and faster convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
344061512完成签到 ,获得积分10
3秒前
米博士完成签到,获得积分10
5秒前
cdercder应助何小小采纳,获得10
6秒前
C_Li完成签到,获得积分10
6秒前
海的海完成签到 ,获得积分10
9秒前
ARIA完成签到 ,获得积分10
12秒前
14秒前
KAI完成签到 ,获得积分10
16秒前
传奇3应助梓树采纳,获得30
16秒前
每天都要开心完成签到 ,获得积分10
18秒前
Cullen完成签到 ,获得积分10
20秒前
21秒前
微笑的小霸王完成签到,获得积分10
21秒前
金枪鱼完成签到,获得积分10
21秒前
23秒前
科研通AI5应助王振军采纳,获得10
24秒前
路漫漫其修远兮完成签到 ,获得积分10
24秒前
丘比特应助kannar采纳,获得30
25秒前
万能的小叮当完成签到,获得积分10
25秒前
小熊发布了新的文献求助10
26秒前
小王加油啊啊啊完成签到 ,获得积分10
27秒前
丽莉完成签到,获得积分20
27秒前
28秒前
28秒前
自信的访云完成签到,获得积分10
28秒前
犹豫代曼完成签到,获得积分10
28秒前
29秒前
洪伟完成签到,获得积分10
32秒前
丽莉发布了新的文献求助10
33秒前
发发完成签到,获得积分10
35秒前
37秒前
Jasper应助科研狗采纳,获得10
39秒前
易吴鱼完成签到 ,获得积分10
40秒前
43秒前
gyl完成签到 ,获得积分10
44秒前
coolkid应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
46秒前
46秒前
李健应助nojego采纳,获得10
46秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Face recognition: challenges,achievementsandfuture directions. 400
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847893
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561822
捐赠科研通 3110943
什么是DOI,文献DOI怎么找? 1714604
邀请新用户注册赠送积分活动 825296
科研通“疑难数据库(出版商)”最低求助积分说明 775471