lncLocator-imb: An Imbalance-Tolerant Ensemble Deep Learning Framework for Predicting Long Non-Coding RNA Subcellular Localization

计算机科学 人工智能 亚细胞定位 卷积神经网络 机器学习 深度学习 计算生物学 生物 基因 生物化学
作者
Haibin Liu,Dianguo Li,Hao Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 538-547 被引量:9
标识
DOI:10.1109/jbhi.2023.3324709
摘要

Recent studies have highlighted the critical roles of long non-coding RNAs (lncRNAs) in various biological processes, including but not limited to dosage compensation, epigenetic regulation, cell cycle regulation, and cell differentiation regulation. Consequently, lncRNAs have emerged as a central focus in genetic studies. The identification of the subcellular localization of lncRNAs is essential for gaining insights into crucial information about lncRNA interaction partners, post- or co-transcriptional regulatory modifications, and external stimuli that directly impact the function of lncRNA. Computational methods have emerged as a promising avenue for predicting the subcellular localization of lncRNAs. However, there is a need for additional enhancement in the performance of current methods when dealing with unbalanced data sets. To address this challenge, we propose a novel ensemble deep learning framework, termed lncLocator-imb, for predicting the subcellular localization of lncRNAs. To fully exploit lncRNA sequence information, lncLocator-imb integrates two base classifiers, including convolutional neural networks (CNN) and gated recurrent units (GRU). Additionally, it incorporates two distinct types of features, including the physicochemical pattern feature and the distributed representation of nucleic acids feature. To address the problem of poor performance exhibited by models when confronted with unbalanced data sets, we utilize the label-distribution-aware margin (LDAM) loss function during the training process. Compared with traditional machine learning models and currently available predictors, lncLocator-imb demonstrates more robust category imbalance tolerance. Our study proposes an ensemble deep learning framework for predicting the subcellular localization of lncRNAs. Additionally, a novel approach is presented for the management of different features and the resolution of unbalanced data sets. The proposed framework exhibits the potential to serve as a significant resource for various sequence-based prediction tasks, providing a versatile tool that can be utilized by professionals in the fields of bioinformatics and genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
new发布了新的文献求助10
1秒前
上官若男应助欣喜的秋莲采纳,获得10
1秒前
Orange应助传统的雁枫采纳,获得10
1秒前
2秒前
2秒前
123完成签到 ,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助50
5秒前
滴滴答答完成签到 ,获得积分10
5秒前
5秒前
Sure发布了新的文献求助10
5秒前
糊涂的剑发布了新的文献求助10
5秒前
7秒前
LZR完成签到,获得积分10
9秒前
刘梦圆发布了新的文献求助10
9秒前
zhoushishan发布了新的文献求助10
10秒前
10秒前
乐乐应助糊涂的剑采纳,获得10
11秒前
12秒前
挽棠完成签到,获得积分10
12秒前
12秒前
CangZm1完成签到 ,获得积分10
12秒前
Akane发布了新的文献求助10
14秒前
Sure完成签到,获得积分10
14秒前
18秒前
傅宣完成签到 ,获得积分10
18秒前
yuchen12a完成签到,获得积分10
19秒前
单手开坦克完成签到,获得积分10
20秒前
haha发布了新的文献求助20
20秒前
20秒前
马麻薯完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助20
22秒前
augen完成签到 ,获得积分10
23秒前
寒冷怜南完成签到 ,获得积分10
23秒前
大大大长腿完成签到,获得积分10
23秒前
大模型应助怕孤单的幻儿采纳,获得10
23秒前
hu完成签到 ,获得积分10
24秒前
YYY完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4645240
求助须知:如何正确求助?哪些是违规求助? 4035722
关于积分的说明 12481943
捐赠科研通 3724519
什么是DOI,文献DOI怎么找? 2055668
邀请新用户注册赠送积分活动 1086678
科研通“疑难数据库(出版商)”最低求助积分说明 968255