Deep Learning-Based Multi-object Tracking

计算机科学 计算机视觉 视频跟踪 人工智能 杂乱 帧(网络) 对象(语法) 目标检测 追踪 跟踪(教育) 模式识别(心理学) 雷达 心理学 教育学 电信 操作系统
作者
Ashish Kumar,Prince Sarren,Raja
标识
DOI:10.1007/978-981-99-3288-7_8
摘要

Multiple object tracking (MOT) is a technique of localizing numerous moving objects over time in a video clip. There are several uses for MOT, including augmented reality, traffic management, medical imaging, surveillance and security, video editing, and video transmission and compression. Generally, MOT is a two-step process that includes object detection and association. Initially, a distinct identifier is allocated to each identified object in the first frame, and then motion trajectories of the detected objects were extracted. All the objects are detected, and their track is preserved in every frame that follows in an image stream. Afterward, the trajectories of each detected object are determined in the existing frame based on its position in the previous frame. MOT aims to determine improved object connections to increase the affinity between objects in the subsequent frames. But exact multiple object tracing is extremely difficult. The challenges are either due to object deformation, namely, pose variation, occlusion, and background clutter, or due to the dynamic environmental variations, namely, fog, snow, rain, and dust particles. In order to cope with these challenges, plenty of work is suggested exploiting deeplearning (DL). In this chapter, we have reviewed the various DL-based MOT algorithms utilized for object detection and tracking. Salient features of these algorithms are reviewed along with performance analysis. In addition, recent performance metrics for MOT algorithms performance evaluation are exhaustively analysed for their application to real-world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
淡淡冬瓜完成签到,获得积分10
2秒前
zhou123432发布了新的文献求助10
4秒前
4秒前
sdl发布了新的文献求助10
4秒前
说道的理完成签到,获得积分10
5秒前
小蘑菇应助Amosummer采纳,获得10
5秒前
6秒前
6秒前
欢喜完成签到 ,获得积分20
6秒前
南夏完成签到,获得积分10
6秒前
Mia发布了新的文献求助10
6秒前
观妙散人完成签到,获得积分10
6秒前
Owen应助0000采纳,获得10
7秒前
小席完成签到,获得积分10
8秒前
yiyi发布了新的文献求助10
11秒前
小蘑菇应助zhou123432采纳,获得10
11秒前
12秒前
干净之槐完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
ttt发布了新的文献求助10
14秒前
14秒前
叶子发布了新的文献求助10
15秒前
yuchao_0110完成签到,获得积分10
15秒前
orixero应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
16秒前
mmichaell应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
mmichaell应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
mmichaell应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得30
16秒前
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3383977
关于积分的说明 10532118
捐赠科研通 3104189
什么是DOI,文献DOI怎么找? 1709550
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878