Wrapped phase aberration compensation using deep learning in digital holographic microscopy

泽尼克多项式 相(物质) 计算机科学 数字全息显微术 补偿(心理学) 卷积神经网络 数字全息术 光学 全息术 人工智能 相位恢复 噪音(视频) 计算机视觉 算法 物理 傅里叶变换 波前 图像(数学) 心理学 量子力学 精神分析
作者
Liu Huang,J.D. van der Tang,Liping Yan,Jiayi Chen,Benyong Chen
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:123 (14) 被引量:10
标识
DOI:10.1063/5.0166210
摘要

In digital holographic microscopy (DHM), phase aberration compensation is a general problem for improving the accuracy of quantitative phase measurement. Current phase aberration compensation methods mainly focus on the continuous phase map after performing the phase filtering and unwrapping to the wrapped phase map. However, for the wrapped phase map, when larger phase aberrations make the fringes too dense or make the noise frequency features indistinct, either spatial-domain or frequency-domain based filtering methods might be less effective, resulting in phase unwrapping anomalies and inaccurate aberration compensation. In order to solve this problem, we propose and design a strategy to advance the phase aberration compensation to the wrapped phase map with deep learning. As the phase aberration in DHM can be characterized by the Zernike coefficients, CNN (Convolutional Neural Network) is trained by using massive simulated wrapped phase maps as network inputs and their corresponding Zernike coefficients as labels. Then the trained CNN is used to directly extract the Zernike coefficients and compensate the phase aberration of the wrapped phase before phase filtering and unwrapping. The simulation results of different phase aberrations and noise levels and measurement results of MEMS chip and biological tissue samples show that, compared with current algorithms that perform phase aberration compensation after phase unwrapping, the proposed method can extract the Zernike coefficients more accurately, improve the phase data quality of the consequent phase filtering greatly, and achieve more accurate and reliable sample profile reconstruction. This phase aberration compensation strategy for the wrapped phase will have great potential in the applications of DHM quantitative phase imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助逃逃逃逃逃517采纳,获得10
刚刚
1秒前
吃人不眨眼应助Peth采纳,获得20
1秒前
就这样完成签到,获得积分10
1秒前
1秒前
万能图书馆应助聂sh采纳,获得10
1秒前
不安的秋白完成签到,获得积分10
1秒前
烟花应助傲娇雁风采纳,获得10
1秒前
2秒前
李健的小迷弟应助Eden采纳,获得10
2秒前
斯文败类应助哈哈悦采纳,获得10
2秒前
2秒前
光亮雁玉发布了新的文献求助10
2秒前
2秒前
幽默的山雁完成签到,获得积分10
3秒前
田様应助芭乐采纳,获得30
3秒前
英姑应助芭乐采纳,获得10
3秒前
zz完成签到,获得积分10
4秒前
火星上的盼晴完成签到,获得积分10
4秒前
暮色发布了新的文献求助10
4秒前
小蘑菇应助lyh采纳,获得10
4秒前
4秒前
鳗鱼飞绿发布了新的文献求助10
4秒前
5秒前
5秒前
焦爽发布了新的文献求助10
5秒前
zyw发布了新的文献求助10
5秒前
潇潇发布了新的文献求助10
5秒前
3molcao完成签到,获得积分10
6秒前
6秒前
窝恁叠发布了新的文献求助10
6秒前
ElbingX完成签到,获得积分10
7秒前
YH完成签到,获得积分10
7秒前
向日葵完成签到,获得积分10
7秒前
科研通AI6应助陈秋采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
赘婿应助啦啦采纳,获得10
7秒前
7秒前
sangsang发布了新的文献求助10
7秒前
丫丫发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233