初始化
计算机科学
算法
水准点(测量)
鉴定(生物学)
人口
混乱的
正确性
局部最优
柯西分布
高斯分布
控制理论(社会学)
数学优化
数学
人工智能
统计
地理
控制(管理)
程序设计语言
物理
人口学
社会学
生物
量子力学
植物
大地测量学
作者
H. L. Li,Xianzhong Jian
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:11: 124319-124330
被引量:5
标识
DOI:10.1109/access.2023.3330495
摘要
In response to the challenge of easily falling into local optima and slow identification speed in the parameter identification of permanent magnet synchronous motors (PMSMs), this paper proposes a CGCRAO algorithm based on chaotic initialization and a hybrid variation strategy. The algorithm uses Tent chaotic mapping for population initialization to improve population diversity. At the same time, by combining the Gaussian and Cauchy distribution characteristics and the three-stage operation idea, the optimal individual variation strategy is autonomously selected in real time to improve the RAO-1 algorithm. This paper validates the effectiveness of the algorithm improvement and the correctness of the three-stage operation idea using eight benchmark test functions. Furthermore, This paper conducted comparative experiments on parameter identification of five algorithms under different operating conditions through simulation and experiments. The results indicate that the proposed CGCRAO algorithm enables fast and accurate identification of PMSM parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI