分割
下肢
人工智能
计算机科学
解剖
医学
外科
作者
Luke O’Donnell,Menelaos Pipis,John S. Thornton,Baris Kanber,Stephen Wastling,Amy McDowell,Nick Zafeiropoulos,Matilde Laurá,Mariola Skorupinska,Christopher J. Record,Carolynne Doherty,David N. Herrmann,Henrik Zetterberg,Amanda Heslegrave,Rhiannon Laban,Alexander M. Rossor,Jasper M. Morrow,Mary M. Reilly
标识
DOI:10.1136/jnnp-2023-332454
摘要
Lower limb muscle magnetic resonance imaging (MRI) obtained fat fraction (FF) can detect disease progression in patients with Charcot-Marie-Tooth disease 1A (CMT1A). However, analysis is time-consuming and requires manual segmentation of lower limb muscles. We aimed to assess the responsiveness, efficiency and accuracy of acquiring FF MRI using an artificial intelligence-enabled automated segmentation technique.
科研通智能强力驱动
Strongly Powered by AbleSci AI