A novel approach of online monitoring for laser powder bed fusion defects: Air-borne Acoustic Emission and Deep Transfer Learning

学习迁移 声发射 光谱图 材料科学 深度学习 计算机科学 特征(语言学) 过程(计算) 人工智能 约束(计算机辅助设计) 融合 模式识别(心理学) 声学 机械工程 工程类 操作系统 物理 哲学 复合材料 语言学
作者
Zhiwen Li,Zhifen Zhang,Shuai Zhang,Zijian Bai,Rui Qin,Jing Huang,Jie Wang,Ke Huang,Qi Zhang,Guangrui Wen
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:102: 579-592 被引量:15
标识
DOI:10.1016/j.jmapro.2023.07.064
摘要

Defects in laser powder bed fusion (L-PBF) are a serious constraint on the application of the technology. Developing a real-time monitoring technology to guide the production process of parts can solve this problem. Currently, the quality of L-PBF with different scanning strategies varies greatly. Therefore, the online monitoring methods for a specific scanning strategy cannot be effectively generalized to other scanning strategies. This is a rarely investigated topic in L-PBF, and defects monitoring mechanism research is insufficient to effectively support the study of L-PBF defects monitoring technology utilizing advanced sensing technologies. Towards this end, we explored the acoustic source generation mechanism, analyzed the acoustic monitoring principle of L-PBF defects, and hence, we propose a novel online monitoring method for L-PBF defects based on air-borne acoustic emission (ABAE) and deep transfer learning (DTL). The method uses time-frequency spectrograms of acoustic signals as the input to the network, and a method of deep transfer learning with multi-source domains knowledge fusion (DTL-MDKF) is proposed to realize the classification of defects. The proposed method was compared with the traditional transfer learning method based on single-source domain knowledge. The results showed that the classification accuracy of the proposed method for L-PBF defects is 98.2 %. In addition, the feature mining capability of the DTL-MDKF is demonstrated by visualizing the features of transfer learning models with different knowledge. Looking at the results, the proposed method can be considered a promising L-PBF defects online monitoring method for complex and changeable working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qqqyy完成签到,获得积分10
1秒前
1秒前
小悦悦完成签到 ,获得积分10
1秒前
burn完成签到,获得积分10
1秒前
殷勤的紫槐完成签到,获得积分10
2秒前
2秒前
找文献呢完成签到,获得积分10
2秒前
陈瑞娟完成签到 ,获得积分10
2秒前
科研通AI2S应助徐老师采纳,获得30
3秒前
3秒前
哒哒哒发布了新的文献求助10
3秒前
12345完成签到,获得积分10
4秒前
MM完成签到,获得积分10
5秒前
6秒前
sweet发布了新的文献求助10
6秒前
李爱国应助时光采纳,获得10
6秒前
Ldq发布了新的文献求助10
6秒前
7秒前
炙热的宛完成签到,获得积分10
7秒前
7秒前
Hunter完成签到,获得积分10
7秒前
8秒前
Aurora完成签到 ,获得积分10
9秒前
西西西番茄完成签到 ,获得积分10
9秒前
比亚迪士尼在逃公主完成签到,获得积分10
9秒前
快乐的忆山完成签到,获得积分10
9秒前
sophia完成签到 ,获得积分10
9秒前
olofmeister完成签到,获得积分10
10秒前
大力怀亦完成签到,获得积分20
10秒前
小Q啊啾完成签到,获得积分10
11秒前
哒哒哒完成签到,获得积分10
11秒前
高山流水完成签到,获得积分10
11秒前
苹果树开花了完成签到,获得积分10
11秒前
bubble嘞发布了新的文献求助10
12秒前
田様应助olivia采纳,获得10
12秒前
13秒前
8R60d8应助皮蛋努力科研采纳,获得20
14秒前
lcls完成签到,获得积分10
14秒前
橘漓儿完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934678
求助须知:如何正确求助?哪些是违规求助? 3480096
关于积分的说明 11006746
捐赠科研通 3209939
什么是DOI,文献DOI怎么找? 1773977
邀请新用户注册赠送积分活动 860660
科研通“疑难数据库(出版商)”最低求助积分说明 797810