Machine learning-based models for predicting mortality and acute kidney injury in critical pulmonary embolism

医学 逻辑回归 肺栓塞 队列 弗雷明翰风险评分 十分位 内科学 重症监护医学 急诊医学 统计 数学 疾病
作者
Geng Wang,Jiatang Xu,Xixia Lin,Weijie Lai,Lin Lv,Senyi Peng,Kechen Li,Mingli Luo,Jiale Chen,Dongxi Zhu,Xiong Chen,Chen Yao,Shaoxu Wu,Kai Huang
出处
期刊:BMC Cardiovascular Disorders [BioMed Central]
卷期号:23 (1) 被引量:6
标识
DOI:10.1186/s12872-023-03363-z
摘要

Abstract Objectives We aimed to use machine learning (ML) algorithms to risk stratify the prognosis of critical pulmonary embolism (PE). Material and methods In total, 1229 patients were obtained from MIMIC-IV database. Main outcomes were set as all-cause mortality within 30 days. Logistic regression (LR) and simplified eXtreme gradient boosting (XGBoost) were applied for model constructions. We chose the final models based on their matching degree with data. To simplify the model and increase its usefulness, finally simplified models were built based on the most important 8 variables. Discrimination and calibration were exploited to evaluate the prediction ability. We stratified the risk groups based on risk estimate deciles. Results The simplified XGB model performed better in model discrimination, which AUC were 0.82 (95% CI: 0.78–0.87) in the validation cohort, compared with the AUC of simplified LR model (0.75 [95% CI: 0.69—0.80]). And XGB performed better than sPESI in the validation cohort. A new risk-classification based on XGB could accurately predict low-risk of mortality, and had high consistency with acknowledged risk scores. Conclusions ML models can accurately predict the 30-day mortality of critical PE patients, which could further be used to reduce the burden of ICU stay, decrease the mortality and improve the quality of life for critical PE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊熊完成签到 ,获得积分20
1秒前
FashionBoy应助可口可乐采纳,获得10
1秒前
科研通AI5应助深情的思雁采纳,获得10
1秒前
KingYugene完成签到,获得积分10
2秒前
小徐801完成签到,获得积分10
3秒前
5秒前
6秒前
七七完成签到,获得积分10
7秒前
lyn完成签到,获得积分10
8秒前
bkagyin应助蛋花花花采纳,获得10
8秒前
8秒前
锅包肉完成签到 ,获得积分10
10秒前
John完成签到,获得积分10
10秒前
852应助偷猪剑客采纳,获得10
11秒前
dyqdzh完成签到,获得积分10
12秒前
Shark完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
15秒前
1111222333发布了新的文献求助10
16秒前
xy完成签到,获得积分10
16秒前
乐观的颦完成签到,获得积分10
17秒前
Gray发布了新的文献求助10
17秒前
可口可乐发布了新的文献求助10
19秒前
拼搏绿柳完成签到,获得积分10
19秒前
21秒前
香蕉觅云应助pito采纳,获得10
21秒前
2Y_DADA完成签到,获得积分10
21秒前
淬h完成签到,获得积分10
22秒前
WSH发布了新的文献求助10
22秒前
23秒前
Gray完成签到,获得积分20
23秒前
优雅的母鸡完成签到,获得积分10
23秒前
yang完成签到,获得积分10
23秒前
Cc完成签到,获得积分10
24秒前
25秒前
烟花应助帅气老虎采纳,获得10
26秒前
28秒前
香辣脆皮坤完成签到,获得积分10
28秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728