DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs

内部核糖体进入位点 计算机科学 计算生物学 翻译(生物学) 人工智能 深度学习 核糖体 编码 序列(生物学) 核糖核酸 机器学习 生物 遗传学 信使核糖核酸 基因
作者
Yuxuan Zhou,Jingcheng Wu,Shihao Yao,Yulian Xu,Wenbin Zhao,Yunguang Tong,Zhan Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107288-107288 被引量:18
标识
DOI:10.1016/j.compbiomed.2023.107288
摘要

Circular RNAs (circRNAs) have been found to have the ability to encode proteins through internal ribosome entry sites (IRESs), which are essential RNA regulatory elements for cap-independent translation. Identification of IRES elements in circRNA is crucial for understanding its function. Previous studies have presented IRES predictors based on machine learning techniques, but they were mainly designed for linear RNA IRES. In this study, we proposed DeepCIP (Deep learning method for CircRNA IRES Prediction), a multimodal deep learning approach that employs both sequence and structural information for circRNA IRES prediction. Our results demonstrate the effectiveness of the sequence and structure models used by DeepCIP in feature extraction and suggest that integrating sequence and structural information efficiently improves the accuracy of prediction. The comparison studies indicate that DeepCIP outperforms other comparative methods on the test set and real circRNA IRES dataset. Furthermore, through the integration of an interpretable analysis mechanism, we elucidate the sequence patterns learned by our model, which align with the previous discovery of motifs that facilitate circRNA translation. Thus, DeepCIP has the potential to enhance the study of the coding potential of circRNAs and contribute to the design of circRNA-based drugs. DeepCIP as a standalone program is freely available at https://github.org/zjupgx/DeepCIP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助xqxqxqxqxqx采纳,获得10
刚刚
淡然冬灵发布了新的文献求助10
刚刚
今后应助负责的方盒采纳,获得10
刚刚
yu发布了新的文献求助10
1秒前
华仔应助郭喆采纳,获得10
1秒前
科研通AI6应助yu采纳,获得10
2秒前
小乔要努力变强完成签到,获得积分10
2秒前
you完成签到,获得积分10
2秒前
香蕉觅云应助water60采纳,获得10
2秒前
冰冰Y哦呀发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
3秒前
gyy完成签到 ,获得积分10
4秒前
4秒前
5秒前
可爱的函函应助在不在采纳,获得10
5秒前
丘比特应助星空_采纳,获得30
5秒前
SSQY完成签到 ,获得积分10
6秒前
6秒前
6秒前
赘婿应助淡然冬灵采纳,获得10
7秒前
风华正茂完成签到 ,获得积分10
9秒前
李健应助菜菜采纳,获得30
9秒前
10秒前
帅气老张发布了新的文献求助10
11秒前
12秒前
12秒前
高翠翠关注了科研通微信公众号
13秒前
至幸发布了新的文献求助10
13秒前
乐乐应助负责的方盒采纳,获得10
13秒前
xy完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助20
14秒前
14秒前
14秒前
田様应助kelvin采纳,获得10
15秒前
w1m关注了科研通微信公众号
16秒前
郭喆发布了新的文献求助10
16秒前
子璇发布了新的文献求助10
16秒前
科研通AI2S应助czz2007采纳,获得10
17秒前
刘瀚臻发布了新的文献求助10
18秒前
mmmmm完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087017
求助须知:如何正确求助?哪些是违规求助? 4302540
关于积分的说明 13408011
捐赠科研通 4127749
什么是DOI,文献DOI怎么找? 2260458
邀请新用户注册赠送积分活动 1264739
关于科研通互助平台的介绍 1198892