High-Precision Single-Leak Detection and Localization in Single-Phase Liquid Pipelines Using the Negative Pressure Wave Technique: An Application in a Real-Field Case Study

工作流程 计算机科学 泄漏 管道运输 SCADA系统 压力传感器 假阳性悖论 实时计算 数据挖掘 人工智能 工程类 数据库 机械工程 环境工程 电气工程
作者
Ebrahim Fathi,Mohammad Faiq Adenan,Nathaniel C Moryan,Fatemeh Belyadi,Hoss Belyadi
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (01): 399-412 被引量:1
标识
DOI:10.2118/217455-pa
摘要

Summary This paper presents a novel workflow for high-precision leak detection in pipeline networks using the negative pressure wave (NPW) technique. The proposed workflow addresses challenges associated with noisy and convoluted pressure transducer data, rapid pressure decay, and the need for robustness in leak event detection. To overcome these challenges, the workflow incorporates data preprocessing techniques for cleansing, normalization, and denoising, as well as dynamic pressure control limit lines to differentiate between pump and leak events. Multiple transducer analysis techniques are used to minimize false positives. Synthetic leak scenarios are generated using the Water Network Tool for Resilience (WNTR) package, enabling a comprehensive assessment of the workflow’s performance. The generated scenarios are validated through pressure history matching against field inline pressure recordings. A dashboard is developed for real-time visualization and verification of leak events. The effectiveness of the workflow is demonstrated through testing on a real network, resulting in the successful detection and precise localization of a confirmed leak event. The workflow proves its capability to achieve high accuracy, with a 100-m resolution in a complex network configuration with 29 pipe sections and 1-Hz pressure signal recordings. For synthetic leak events, a 10-Hz pressure signal is utilized, achieving a remarkable 10-m accuracy. Moreover, the integration of the workflow with supervisory control and data acquisition (SCADA) systems is showcased, highlighting its potential for near real-time leak detection in practical applications. Overall, this paper presents a comprehensive and effective workflow for high-precision leak detection and localization in pipeline networks, offering valuable insights into improving the efficiency and reliability of leak detection systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好的完成签到 ,获得积分10
刚刚
快乐人杰完成签到,获得积分10
刚刚
pengliao完成签到,获得积分10
刚刚
彩色的恋风完成签到,获得积分10
1秒前
情怀应助欣慰的乐荷采纳,获得10
2秒前
3秒前
清都山水郎完成签到,获得积分10
5秒前
刀锋完成签到,获得积分10
5秒前
bkagyin应助wwy采纳,获得10
6秒前
Erin完成签到,获得积分10
6秒前
小用一阵发布了新的文献求助10
7秒前
xcltzh1296完成签到,获得积分10
8秒前
大红完成签到,获得积分10
9秒前
Tigher发布了新的文献求助10
9秒前
Ava应助猪猪hero采纳,获得10
9秒前
9秒前
风衣拖地完成签到 ,获得积分10
10秒前
jianhua020202完成签到,获得积分10
11秒前
13秒前
Orange应助皮皮龙OVO采纳,获得10
14秒前
wys2493发布了新的文献求助30
15秒前
你说的完成签到 ,获得积分10
19秒前
难过的尔丝完成签到,获得积分10
20秒前
Orange应助小肆采纳,获得10
21秒前
23秒前
wys2493完成签到,获得积分10
24秒前
英姑应助林二车娜姆采纳,获得10
24秒前
务实的紫伊完成签到,获得积分10
25秒前
小肆完成签到 ,获得积分10
25秒前
充电宝应助玉汝于成采纳,获得10
26秒前
贝贝贝完成签到,获得积分10
29秒前
29秒前
皮皮龙OVO发布了新的文献求助10
30秒前
30秒前
31秒前
lcxszsd完成签到 ,获得积分10
34秒前
34秒前
研友_VZG7GZ应助lqm采纳,获得10
35秒前
姜呱呱呱发布了新的文献求助10
35秒前
鳗鱼凡波发布了新的文献求助10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841907
求助须知:如何正确求助?哪些是违规求助? 3383914
关于积分的说明 10532005
捐赠科研通 3104182
什么是DOI,文献DOI怎么找? 1709532
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878