GPU Accelerated Full Homomorphic Encryption Cryptosystem, Library, and Applications for IoT Systems

计算机科学 同态加密 密文 MNIST数据库 卷积神经网络 协处理器 云计算 加密 明文 深度学习 计算机工程 并行计算 人工智能 计算机网络 操作系统
作者
Xin Jin,Hehe Gao,Jianyi Zhang,Shuya Yang,Xin Jin,Kim–Kwang Raymond Choo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6893-6903 被引量:2
标识
DOI:10.1109/jiot.2023.3313443
摘要

Deep learning such as convolutional neural networks (CNNs) have been utilized in a number of cloud-based Internet of Things (IoT) applications. Security and privacy are two key considerations in any commercial deployments. Fully homomorphic encryption (FHE) is a popular privacy protection approach, and there have been attempts to integrate FHE with CNNs. However, a simple integration may lead to inefficiency in single-user services and fail to support many of the requirements in real-time applications. In this paper, we propose a novel confused modulo projection based FHE algorithm (CMP-FHE) that is designed to support floating-point operations. Then we developed a parallelized runtime library based on CMP-FHE and compared it with the widely employed FHE library. Our results show that our library achieves a faster speeds. Furthermore, we compared it with the state-of-the-art confused modulo projection based library and the results demonstrated a speed improvement of 841.67 to 3056.25 times faster. Additionally, we construct a Real-Time Homomorphic Convolutional Neural Network (RT-HCNN) under the ciphertext-based framework using CMP-FHE, as well as using graphics processing units (GPUs) to facilitate acceleration. To demonstrate utility, we evaluate the proposed approach on the MNIST dataset. Findings demonstrate that our proposed approach achieves a high accuracy rate of 99.13%. Using GPUs acceleration for ciphertext prediction results in us achieving a single prediction time of 79.5 ms. This represents the first homomorphic CNN capable of supporting real-time application and is approximately 58 times faster than Microsoft’s Lola scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优雅的水香完成签到,获得积分10
2秒前
luoshi发布了新的文献求助10
2秒前
3秒前
于雷是我完成签到,获得积分10
4秒前
lsq发布了新的文献求助30
5秒前
6秒前
ding应助研友_zndy9Z采纳,获得10
6秒前
sun0115完成签到 ,获得积分10
6秒前
我很懵逼完成签到,获得积分20
7秒前
wanci应助mtt采纳,获得10
8秒前
subcrym发布了新的文献求助10
9秒前
dudu完成签到 ,获得积分10
10秒前
10秒前
majun完成签到,获得积分20
11秒前
11秒前
宓广缘完成签到 ,获得积分10
12秒前
科研通AI5应助趙途嘵生采纳,获得10
12秒前
大大怪将军完成签到,获得积分10
12秒前
加菲丰丰发布了新的文献求助10
13秒前
15秒前
JJ发布了新的文献求助10
16秒前
kento应助糟糕的铁锤采纳,获得200
16秒前
17秒前
19秒前
20秒前
思源应助优雅的水香采纳,获得10
20秒前
anton发布了新的文献求助10
23秒前
QianShenYu发布了新的文献求助50
24秒前
24秒前
24秒前
jimmyhui完成签到,获得积分10
25秒前
善学以致用应助aliu采纳,获得10
27秒前
敏敏完成签到 ,获得积分10
27秒前
个木发布了新的文献求助10
28秒前
29秒前
赘婿应助认真夜云采纳,获得30
30秒前
30秒前
30秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997