A token selection-based multi-scale dual-branch CNN-transformer network for 12-lead ECG signal classification

计算机科学 卷积神经网络 变压器 深度学习 人工智能 冗余(工程) 模式识别(心理学) 机器学习 数据挖掘 工程类 电压 操作系统 电气工程
作者
Siyuan Zhang,Cheng Lian,Bingrong Xu,Junbin Zang,Zhigang Zeng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 111006-111006 被引量:20
标识
DOI:10.1016/j.knosys.2023.111006
摘要

The timely identification of cardiovascular diseases is critical for effective intervention, with the electrocardiogram (ECG) serving as a pivotal diagnostic tool. Recent advancements in deep learning-based methods have significantly enhanced the accuracy of ECG signal classification. In clinical settings, cardiologists rely on diagnoses derived from standardized 12-lead ECG recordings. It must be acknowledged that there is considerable redundancy in the 12-lead ECG recordings used for ECG signal classification, thereby hindering their generalization capabilities. Meanwhile, considering multi-scale features in 12-lead ECG recordings is a crucial aspect that is often overlooked by existing methods. Based on the above observations, we develop a multi-scale Convolutional Transformer network for ECG signal classification. By utilizing learnable Convolutional neural network (CNN) blocks and novel dual-branch Transformer encoders, the proposed network automatically extracts features at different scales, resulting in superior feature representation. Additionally, by discarding low-importance patches and focusing on high-importance patches, we effectively alleviate information redundancy in the 12-lead ECG recordings. We conduct comprehensive experiments on three commonly used ECG datasets. The Research results show that our proposed network outperforms existing state-of-the-art networks in multiple tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
须臾完成签到,获得积分10
刚刚
tt完成签到,获得积分10
1秒前
1秒前
李李完成签到,获得积分10
2秒前
Leisle发布了新的文献求助10
3秒前
梁某完成签到,获得积分10
3秒前
3秒前
GodMG完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
zcl应助香蕉猴子啦啦啦采纳,获得80
4秒前
徐恺完成签到,获得积分10
5秒前
drinkliu完成签到,获得积分10
5秒前
搜集达人应助搞怪城采纳,获得10
5秒前
7秒前
一个西藏完成签到 ,获得积分10
7秒前
7秒前
7秒前
zc关注了科研通微信公众号
7秒前
7秒前
gdh完成签到,获得积分10
8秒前
7907完成签到,获得积分10
8秒前
CC完成签到,获得积分10
8秒前
18754437414完成签到,获得积分10
9秒前
思源应助单纯的思松采纳,获得10
10秒前
小余完成签到,获得积分20
10秒前
风中的嘉熙完成签到,获得积分10
10秒前
10秒前
04亻完成签到,获得积分10
11秒前
gdh发布了新的文献求助10
12秒前
背后白枫完成签到,获得积分10
12秒前
12秒前
唠叨的甜瓜完成签到,获得积分10
12秒前
xxxllllll发布了新的文献求助10
13秒前
明理的又柔完成签到,获得积分10
14秒前
大大怪完成签到,获得积分20
14秒前
14秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388804
求助须知:如何正确求助?哪些是违规求助? 4511068
关于积分的说明 14037587
捐赠科研通 4421835
什么是DOI,文献DOI怎么找? 2428954
邀请新用户注册赠送积分活动 1421511
关于科研通互助平台的介绍 1400661