Estimation of canopy water content for wheat through combining radiative transfer model and machine learning

均方误差 天蓬 克里金 遥感 数学 大气辐射传输码 标准差 回归 环境科学 计算机科学 统计 辐射传输 地理 物理 考古 量子力学
作者
Jie Zhu,Jingshan Lu,Wei Li,Ying Wang,Jiale Jiang,Tao Cheng,Yan Zhu,Weixing Cao,Xia Yao
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:302: 109077-109077 被引量:10
标识
DOI:10.1016/j.fcr.2023.109077
摘要

Canopy water content (CWC) is an important indicator of crop growth. Currently, the hybrid approach, which combines the physical model and machine learning (ML) method, is commonly used for inversing CWC at the regional scale via optical imagery. Although this approach has good inversion accuracy, it suffers from ill-posed issues from the physical model due to the difference between actual and simulated scenes. Meanwhile, the ability of existing ML methods to resolve this difference remains unclear. To fill the above study gaps, we added different degrees of Gaussian noise into the simulated dataset to reduce the differences in spectral reflectance between that simulated by the PROSAIL-5B model and that measured from optimal imagery. Furthermore, this study also compared the performance of different ML approaches (neural network, NN; Gauss process regression, GPR; and kernel ridge regression, KRR) in the retrieval of wheat (Triticum aestivum L.) CWC based on PROSAIL-simulated datasets. Additionally, we also compared the inversion results for the CWC generated by the SNAP Toolbox with those estimated by the hybrid approach. The results showed that the aforementioned hybrid approaches performed well in the retrieval of wheat CWC when Gaussian noise with a mean of zero and a standard deviation of 0.06 (η: 0, 0.06) was added to the simulated dataset. The hybrid model based on GPR had the highest accuracy of estimation for the CWC (RMSE = 0.0096 g/cm2, RRMSE = 22.2%), when compared with NN or KRR (NN: RMSE = 0.0105 g/cm2, RRMSE = 26.9%; KRR: RMSE = 0.0099 g/cm2, RRMSE = 24.3%). It also outperformed the existing CWC-retrieval algorithms among the SNAP Toolbox (RMSE = 0.027 g/cm2, RRMSE=44.1%). Our results demonstrate that the hybrid approach in combination with GPR and the physical model can accurately retrieve the CWC of crops, thus confirming that the approach is suitable for estimating the CWC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanir99发布了新的文献求助10
1秒前
1秒前
平淡亦云发布了新的文献求助30
1秒前
2秒前
核桃发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
4秒前
hjyylab应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
hjyylab应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
5秒前
如来完成签到 ,获得积分10
5秒前
李健应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
唐征完成签到,获得积分10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
CodeCraft应助旧雨新知采纳,获得10
7秒前
小周小周完成签到,获得积分10
7秒前
bkagyin应助忐忑的源智采纳,获得10
7秒前
Mida发布了新的文献求助10
9秒前
zhengxinyang完成签到,获得积分10
9秒前
10秒前
LYM完成签到,获得积分10
10秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844484
求助须知:如何正确求助?哪些是违规求助? 3386857
关于积分的说明 10546388
捐赠科研通 3107336
什么是DOI,文献DOI怎么找? 1711707
邀请新用户注册赠送积分活动 824140
科研通“疑难数据库(出版商)”最低求助积分说明 774573